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Activity 1

1 Synopsis.

Quite often in Statistics we attempt to learn something about a population which we cannot
fully inspect on the basis of what we observe in a subset (a sample) taken from it1.

For instance, we may face a population with unknown variance whose value we want
to approximate or estimate. Such approximation is usually computed from the values of a
sample.

We can estimate a variance, or any other parameter of a population, in virtually endless
ways, some better than others. Usually, but not always, statistical theory will guide us in
the choice of good methods of estimation. If everything else fails, though, we can always
resort to the Monte Carlo method presented in Seminar 1.

What you need to know. In order to benefit from this activity you only need to know some
rudiments of R. The introduction in Seminar 1 may well be enough. Review your notes and
remember the use of instructions such as runif, rnorm, if and for.

2 The problem

2.1 Two estimates of the variance

By now you are probably familiar with two different ways to estimate the variance σ2 =
E[(X −m)2] of a population. Given a sample of size n from it, we can either compute

s2 = 1
n

n∑
i=1

(xi − x)2 (1)

1More on sampling as well as a fuller explanation of all the italiced words that follow will occupy us the
second half of the course.
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or

s2
∗ = 1

n− 1

n∑
i=1

(xi − x)2. (2)

You may surmise that the difference between the two estimates cannot be that much, par-
ticularly if n is any big. Still, it is interesting to investigate exactly what is the difference
and which one is better, according to different criteria of “betterness”. Do as instructed in
Section 2.2 next.

2.2 Work to do

1. For sample sizes n = 10, 100 and 1000 generate N = 1000 samples from a normal
distribution N(0, σ2 = 1).

2. Each time you generate a random sample, compute both (1) and (2) and save the values.
At the end, you should have two matrices (call them var1 and var2) with three columns
each containing one thousand estimates obtained from that many samples. This is quite
easy, it will suffice to use two nested loops like:

> N <- 1000

> sizes <- c(10,100,1000)

> var1 <- var2 <- matrix(0,N,3)

> for (i in 1:3) {

n <- size[i]

for (j in 1:N) {

# do whatever is needed here

}

}

Notice that you are here in the (unrealistic) situation in which you know what the
value of the parameter σ2 is. This affords you the luxury of being able to assess each
possible estimator by comparison with the (usually unavailable) true value.

3. Now, for each sample size and each of the two competing estimators (1) and (2) you
have one thousand realizations. Except by sheer luck, not one will be exactly equal to
the true, known value of σ2, but either of the two estimators may appear to approach
the target better or worse than the other. Here are a few suggestions you may try:
check your results and communicate your findings.

(a) Which of the two estimators appears on average to be closer to the true value of
1? To answer that for e.g. the estimator based on samples of size n = 10 (first
column of the matrices), you might compute

> mean(var1[,1]) - 1

> mean(var2[,1]) - 1
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and likewise for the second and third columns2.

(b) Is that average deviation from the true value a good indication of “goodness” of
the estimator? (Hint: It might happen that one estimator always misses badly
the target, sometimes being much larger, sometimes much smaller than the true
value, yet on average is about right.)

(c) (connected with previous question) Consider now a different way of judging esti-
mators. We will judge an estimator good using the average of squared deviations
from the true value i.e. for the first estimator (var1) and first sample size (column
1),

> mean( (var1[,1] - 1)^2 )

Clearly, we would like this figure to be small. Compute it for the two estimators
and three sample sizes and draw your conclusions3.

(d) What happens with

> mean(var1[,1]) - 1

> mean(var2[,1]) - 1

when you consider larger sample sizes (that is, you take the second or third column
of var1 and var2)?

References

2The differences you are computing here are similar to what we will call bias later in the course.
3The average square differences that we are computed here can be seen as approximations to what we

will later call mean square error (MSE).
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3 Posibles respuestas

Pueden completar la ayuda que se les da escribiendo código como:

> N <- 1000

> sizes <- c(10,100,1000)

> var1 <- var2 <- matrix(0,N,3)

> colnames(var1) <- colnames(var2) <- c("n10","n100","n1000")

> for (i in 1:3) {

n <- sizes[i]

for (j in 1:N) {

muestra <- rnorm(n,0,1)

m <- mean(muestra)

s2 <- sum( (muestra-m)^2 ) / n

s2star <- sum( (muestra-m)^2 ) / (n-1)

var1[j,i] <- s2

var2[j,i] <- s2star

}

}

Una vez pobladas las dos matrices podemos estimar los sesgos aśı (se dan formas alternativas
de hacerlo; los alumnos utilizarán seguramente un bucle más farragoso de escribir, pero
igualmente correcto):

> apply( (var1-1), 2, mean)

n10 n100 n1000

-0.116648582 -0.010655491 0.001391478

> colMeans(var2 - 1)

n10 n100 n1000

-0.0184984243 -0.0006621119 0.0023938720

y los ECM aśı:

> apply( (var1-1)^2, 2, mean)

n10 n100 n1000

0.184441074 0.019448332 0.001810834

> colMeans( (var2 - 1)^2 )

n10 n100 n1000

0.211248590 0.019727806 0.001818252
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El estimador en var1 es sesgado (por defecto), cosa que es particularmente visible con mues-
tras muy pequeñas (n = 10). A medida que n crece, ambos estimadores dan resultados
prácticamente idénticos en cuanto a sesgo.

El estimador en var1, pese a su sesgo, proporciona sistemáticamente menor ECM que el
estimador insesgado en var2. De nuevo esto es particularmente apreciable cuando n = 10.
Aqúı tenemos un ejemplo de estimador sesgado que domina (en términos de ECM) a otro
insesgado; se lo podremos recordar más adelante en el curso, en la parte de inferencia.
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