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Activity 2

1 Synopsis.

What this activity is about. In the previous seminar you saw how to assess estimators using
the Monte Carlo method. You now have to use this technique again in conjunction with the
theory to examine the properties of several estimators.

What you need. You need to be fully acquainted with the content of previous seminars and
practice assignment. You will also need access to a computer equiped with R.

2 Background

In this activity we will explore further the U(0, θ), one of the distributions that was repeatedly
used in class as an example (of lack of regularity and consequent inapplicability of the
Cramér-Rao lower bound, of an inefficient moment estimator, of a biased maximum likelihood
estimator. . .).

You will be required to check, both analytically and using Monte Carlo simulation, that:

1. Even though the Cramér-Rao theorem cannot be used to establish efficiency of the
MLE of θ, θ̂MLE, it is still true that in terms of mean square error (MSE) it dominates
moment estimators1.

2. An unbiased estimator may not be optimal in terms of mean square error.

1When the Cramér-Rao inequality is not applicable due to lack of regularity, as in this case, there are
alternative results which provide, when they exist, optimal estimators in some sense (for instance minimum
variance unbiased estimators). One such result is the Rao-Blackwell theorem. If you are curious, you can
check any of the manuals [1], [3], [2], [4] or [5], all of which are of higher level than this course and suitable as
continuation texts.
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3 Problems

Consider X ∼ U(0, θ). Our goal is to obtain a good estimator of θ from a sample of
independent observations X1, . . . , Xn.

1. Consider the usual moment estimator, obtained from matching the first order population
and sample moments, θ̂ = 2n−1∑n

i=1 Xi = 2X. Obtain the mean and variance of said
estimator. Is it unbiased?

2. The previous moment estimator was obtained by equating α1 = E[X] to X, which is
the usual and recommended practice as it leads to the simplest estimator. But we could
equate αk(= E[Xk]) and n−1∑n

i=1 X
k
i to obtain an alternative equation from which to

derive an alternative moment estimator.

(a) Check that the k-th order moment is αk = θk

k + 1 .

(b) Equate αk to n−1∑n
i=1 X

k
i to obtain an alternative moment estimator θ̂k of θ.

Show that

θ̂k =
(
k + 1
n

n∑
i=1

Xk
i

)1/k

.

(You can check that for k = 1 we have θ̂k = θ̂ = 2X, the ordinary moment
estimator obtained before.)

(c) Is it easy to check unbiasedness for θ̂k? What stands in your way when you try to
establish unbiasedness?

3. Remember that the MLE of θ is θ̂MLE = X(n) = max(X1, X2, . . . , Xn).

(a) Find its mean and variance.

(b) Is it unbiased?

(c) What is its mean square error?

4. Generate N = 1000 samples of size n = 50 from the U(0, θ) with θ = 2.

(a) For each sample compute: i) The ordinary moment estimator θ̂; ii) The MLE,

θ̂MLE; and iii) The alternative moment estimator θ̂k for values of k = 5 and k = 10.
Save your results.

(b) Estimate the bias of all estimators. It should be close to the theoretical values

that you have obtained for θ̂ and θ̂MLE.

(c) Estimate the mean square error (MSE) of all estimators. Which estimator comes
out best?
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5. (optional) It would seem that θ̂k improves for larger k. What would happen if we let k
take a very large value? (You can obtain some insight if you take the limit

lim
k→∞

θ̂k = lim
k→∞

(
k + 1
n

n∑
i=1

Xk
i

)1/k

and see what you obtain.)

6. Compute the efficiency of the moment estimator θ̂ relative to the MLE estimator
corrected of bias.

7. (optional) If you get this far, you might want to play with your program. What happens
if you correct the bias of the MLE estimator? Does the MSE improve? What happens
with the relative performance of the estimators for different sample sizes n? Remember
that the MLE estimator is guaranteed (in regular cases, which is not the case here) to
be asymptotically efficient, but for small sample sizes we might find others which are
vastly superior. Report any results that you find interesting.

4 Hints and comments

1. It is very easy to obtain the k-th order moment of the U(0, θ) distribution. All that is
required is to solve the integral

αk =
∫ θ

0
xk
(1
θ

)
dx

which is immediate.

2. To obtain the mean and variance of θ̂MLE = X(n) you need first its distribution. Notice
that,

FX(n)(x) = P (X(n) ≤ x) =
(
x

θ

)n
.

(The probability that the largest sample value is below x is the probability that all n
independent sample values are below x. Taking the derivative of FX(n)(x) will give you
the density and allow easy, tough tedious, computation of mean and variance.)

3. When comparing biased estimators, variance alone is of no help; MSE (mean square

error, E(θ̂ − θ)2) makes more sense.

4. A possible work flow for question 4 would be:

(a) Create a matrix with 1000 rows and 4 columns to hold the values of all four tested
estimators for each of the N = 1000 samples. Fill with zeros or whatever and
name the columns. You can use code as:

> results <- matrix(0, 1000, 4)

> colnames(results) <- c("Moment-1", "Moment-5", "Moment-10", "MLE")
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(b) Open a loop, for (i in 1:1000) { } inside which you generate the samples,
compute the values of all estimators and save them in row i of matrix results

(c) When you exit the loop, estimate the bias and/or the mean square for all columns.
For instance, to estimate the means of the columns you might use

> means <- colMeans(results)

This enables you to estimate the bias. To compute the mean square error you
might use:

> MSE <- colMeans( (results - 2)^2 )

(d) To quickly see what is going on, you might want to draw boxplots of the values of
each estimator. Do for instance,

> boxplot(as.data.frame(results))

(Function boxplot requires as its argument a list or data frame; we can turn our
matrix of results into a data frame on the fly, as shown.)

5. To answer the optional question 5 above, you might want to notice that:

lim
k→∞

(
k + 1
n

)1/k

= 1

Also notice that
Xk

1 +Xk
2 + . . .+Xk

n ≈ Xk
(n) as k →∞

where ≈ means “asymptotically equivalent” and X(n) = maxi(X1, . . . , Xn). In other
words, when we have a sum of non-negative numbers all raised to a large power, the
powers of all but the largest become negligible in the sum.
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