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1 Synopsis.

What we are set about to do. In a previous seminar you saw a simple example on how to estimate
things by simulation, using the Monte Carlo method. We will again resort to the same technique to
study empirically the properties of different estimators.

We already have some theory and results concerning properties of estimators. However, in
many cases, theory is intractable or only can shed light on what happens with large sample sizes.
Simulation, therefore, is of great help to ascertain what happens with small samples, when the
theory is too involved or simply not at all available.

What you need. You need to be fully acquainted with the content of the previous seminar and
practice assignment. You will also need access to a computer equipped with R.

2 Background

We have seen theoretically that in a large number of cases, moment estimators and maximum
likelihood estimators of the mean of a distribution are coincident. Although we also have seen one
exception (the best estimator of the θ/2, the mean of a uniform U(0, θ), is not X = n−1(X1 + . . .+
Xn)), you might be tempted to think that for all practical purposes X is just “the right” estimator
of the mean of a distribution.

In this seminar we will see that, in some cases, what would seem the obvious estimator of a
location parameter has dismal performance; it may even fail to be consistent.

3 An example of total failure of X as estimator

3.1 The Cauchy distribution

We have met the Cauchy distribution in class. It has density,

f(x) = 1
π

1
1 + x2 ; (1)

1



Statistics Applied to Economics Curso 2.020-2.021

it is, with another name, the one-degree-of-freedom Student’s t.
Consider now the shifted Cauchy distribution, with location parameter d. Its density is:

f(x) = 1
π

1
1 + (x− d)2 ; (2)

it is the same distribution, translated d units to the right. See in Figure 1 the ordinary and shifted
distributions when d = 2; d is called the location parameter of the distribution.

Figure 1: Ordinary and shifted Cauchy distributions (= Student’s t1 distributions). The dashed
density has location parameter d = 2.
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3.2 Computation of the likelihood

The likelihood for a sample of x1, . . . , xn is quite easy to write:

`(d;x1, . . . , xn) =
n∏

i=1

1
π

1
1 + (xi − d)2 (3)

Since the density is symmetric around the location parameter d, we might hope that X = (X1 +
. . .+Xn)/n would be a “good” estimator of d, perhaps the MLE. Let’s check that this is not the
case.

We can easily generate a random sample of size n = 2 from the density (2), since it is just a t1
shifted 2 units to the right:
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> x <- rt(n=2,df=1) + 2

Each time we run the code above, we obtain two different observations. In this case,

> x

[1] 1.190118 -2.955073

Next we have to compute the likelihood (3) associated to that sample. Since this will have to be
evaluated time and again, we can define a function as follows:

> lik <- function(d) { 1 / ( (1 + (x[1]-d)^2) * (1 + (x[2]-d)^2) * pi^2 ) }

Note that x[1] and x[2] are the two values of the sample just generated. Each time we invoke
function lik with an argument d we compute the likelihood of such d given the sample.

> lik(3)

[1] 0.0006498971

Observe that we could also compute the likelihood taking advantage of the pre-defined density
function for the Student’s t1, which is just another name for the Cauchy distribution. Lets define

> lik.alternative <- function(d) { return(dt(x[1]-d,df=1) * dt(x[2]-d,df=1)) }

We can check that we obtain the same value before for the likelihood:

> lik.alternative(3)

[1] 0.0006498971

The MLE associated to the given sample is the value of d for which the function lik (or the
equivalent lik.alternative) attains its maximum. Even with only two observations, it is messy
to solve for that maximum. It will be much easier to plot the function over a range likely to contain
the maximum and locate it visually. We can do something like:

> curve(lik,from=-5,to=5,n=1000)

> abline(v=mean(x))

> abline(v=2,col="red")

> text(2.15, 0, "d", col="red")

> text(mean(x)+0.2, 0, expression(bar(X)))

The result can be seen in Figure 2. In this case, we have two equal maxima —a not infrequent
occurrence with this distribution, even with larger samples. Notice that X 6= d̂MLE.

3.3 Properties of X as estimator of d

We may now turn to investigate the properties of X as estimator of d. First and foremost, is it
consistent? It can be shown analytically that it is not; we will see what happens empirically as we
let the sample size grow. First, let’s generate a large number of observations from a shifted Cauchy:

> N <- 10000

> obs <- rt(n=N,df=1) + 2
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Figure 2: Likelihood associated to the sample x. The red line marks the true d, the black line marks
X.
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Next, we will compute X for samples of increasing size, and store the results in vector Xn, which we
define beforehand and fill with zeroes:

> Xn <- rep(0,N)

> for (i in 1:N) {

Xn[i] <- sum(obs[1:i]) / i

}

After executing this code1, Xn[n] contains Xn, the average of the first n observations. We can plot
Xn versus n to see whether it approaches d:

> d <- 2

> plot(1:N,Xn[1:N],type="l")

> abline(h=d,col="red")

The result is shown in Figure 3. We see that there are no signs of Xn approaching d as n grows. In
fact, |Xn − d| is larger for n = 10000 than if was for n = 4000. Looking at the large jumps of Xn

we may suspect what the problem is: the Cauchy has thick tails, and every once in a while we get a

1Writen in the form above for clarity; it would be much faster to write Xn <- cumsum(obs) / (1:N).

4



Statistics Applied to Economics Curso 2.020-2.021

Figure 3: Xn does not appear to consistently estimate d, whose value is represented as a red line
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very large observation which drastically changes the value of Xn. In fact, Xn has no mean and its
variance does not decrease with n2.

3.4 What alternatives do we have?

A simple estimator of the location d like Xn completely fails. How then can we estimate d?

3.4.1 The maximum likelihood estimator

The maximum likelihood estimator enjoys in this case the usual good (large sample) properties, but
it is complicated to obtain for all but small samples. The log likelihood is,

L(d;x1, . . . , xn) = log
(

n∏
i=1

1
π

1
1 + (xi − d)2

)
(4)

= −
n∑

i=1
log(1 + (xi − d)2)− n log(π) (5)

2It can be shown that the distribution of Xn, for whichever value of n, is Cauchy (the same as the distribution of a
single observation!), hence with no mean and infinite variance.
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Taking the derivative with respect to d and equating to zero yields

n∑
i=1

xi − d
1 + (xi − d)2 = 0 (6)

which usually has to be solved numerically. The Cramér-Rao lower bound can be computed
analytically3:

−∂
2 log f(x; d)

∂d2 = 2(1− (x− d)2)
(1 + (x− d)2)2 (7)

I(d) = E

(
2(1− (x− d)2)
(1 + (x− d)2)2

)
(8)

=
∫ ∞
−∞

1
π

1
1 + (x− d)2

2(1− (x− d)2)
(1 + (x− d)2)2 dx (9)

= 1
2 , (10)

hence the Cramér-Rao lower bound for an estimator based in n observations is 2/n and the MLE
converges in distribution to N(d, σ2 = 2/n) as n→∞.

3.4.2 Trimmed means

Since the problem with the instability of Xn as estimator of d seems to be the appearance of very
large observations from time to time, we might think of computing the average dropping those
observations. For instance, we could drop the 10% largest and smallest observations and compute
the average of the remaining 80%. The resulting estimator is a so-called trimmed mean, with 10%
trimming on each side, usually denoted as X [0.10]. It can be computed in R as,

> mean(x,trim=0.10)

As the trimming proportion approaches 50%, the trimmed mean approaches a median. Unlike the
ordinary average Xn the median (and trimmed means) have finite variances and are consistent
estimators of d.

3.5 Efficiency

Theoretical results are available on the variance of different trimmed means, so their efficiency is
known4. In keeping with our empirical, experimental approach, we will approximate the efficiencies
of X [0.10] and the median by computing their mean square error for different values of n and
comparing with the Cramér-Rao lower bound. Both are unbiased for large n.

We will consider sample sizes going from

> first <- 200

to

> N <- 2000

3The integration necessary for the expectation in (10) is not trivial.
4See for instance http://www.johndcook.com/Cauchy_estimation.html.
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First, we define a matrix in whose N rows and two columns we will store the sample variances of
the chosen estimators:

> VAR <- matrix(0,N,2)

Next, for each sample size n = 200, . . . , N we will generate K = 60 samples on size n. For each of
the K = 60 samples, we compute the value of both estimators and store both values (d̂− d)2 in one
row of SE. The average of the K = 60 square errors goes into the n-th row of VAR; this will be our
approximation of the variance of each estimator for samples of size n.

> K <- 60

> SE <- matrix(0,K,2)

> for (n in first:N) {

for (k in 1:K) {

obs <- rt(n=n,df=1) + 2

SE[k,1] <- (mean(obs,trim=0.10) - d)^2

SE[k,2] <- (median(obs) - d)^2

}

VAR[n,] <- colMeans(SE)

}

We can now plot the results:

> plot(first:N,VAR[first:N,1], col="black", type="l",

xlab="Sample size", ylab="Estimated variance")

> lines(first:N,VAR[first:N,2],col="green")

and add the asymptotic variance of the MLE estimator for comparison purposes:

> lines(first:N, 2 / first:N, col="red",lwd=2)

> legend("topright",

legend=c("Trimmed 10%","Median","Cramer-Rao bound"),

text.col=c("black","green","red"))

The results can be seen in Figure 4. We see that for a given sample size, X [0.10] has larger variance
than the median, and both are above the Cramér-Rao bound5, so the median is more efficient in
this case. An approximation to the efficiencies of both can be obtained dividing the CR bound of
2/n by the variance of either estimator for the same n. So for n = 2000, for instance,

> n <- 2000

> EffTrimmedMean <- (2/n) / VAR[n,1]

> EffTrimmedMean

[1] 0.5391658

> EffMedian <- (2/n) / VAR[n,2]

> EffMedian

[1] 0.9705007

We see that the 10% trimmed mean has low efficiency, while the median reaches 97% of the theoretical
optimum efficiency.

5Remember, though, that the variances displayed are estimated in a simulation, not real variances; it can happen
that on occasion one of those estimated variances falls below the Cramér-Rao bound.
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Figure 4: Estimation variance of X [0.10] and the median as estimators of the location parameter d
of a Cauchy. The red line gives the CR lower bound for each sample size.
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4 Some further comments

1. The replacement of the mean by the median or something else is common in practice, whenever
we deal with distributions with a very large variance. For instance, in sailing competitions
ships usually race several times. For each ship, average points are computed dropping the best
and worse races. The intent is to remove extreme observations which may be the outcome of
very good (or bad) luck and keep the central ones, which presumably are a better indicator of
the ability of crew.

2. Why use a trimmed mean in the case of sailing races and not the median? Did not our
simulation show that the median is more efficient? That is the case for the Cauchy: but
in other cases (e.g., the normal distribution) the ordinary mean is the most efficient. For
situations half way between them, a trimmed mean may be a good compromise.

3. For an accessible account to some of the topics discussed you may turn to the Wikipedia,
https://en.wikipedia.org/wiki/Cauchy_distribution
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