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1 Synopsis.

What this seminar is about. In the previous seminar you saw how to estimate things using the
Monte Carlo method. We will learn to use this technique again in conjunction with the theory to
assess the effect of violation of the normality and equal variances assumptions on some common
hypothesis tests.

What you need. You need to be fully acquainted with the content of previous seminars and practice
assignment. You will also need access to a computer equiped with R.

2 Background

2.1 Classical normal theory tests

We have seen by now several classic tests (on the mean of a single population, on the difference of
means of two populations, on the difference of variances. . .) In all cases, the normality assumption
on the “mother” population (or the mother populations, where there are two) enables us to derive
the distribution of the test statistic under the null hypothesis, and hence the significance level
associated to a critical region. For instance, if we deal with a normal population N(m0, σ

2), we
know that the test statistic

Z = X −m0
s

√
n− 1 (1)

is distributed as Student’s t with (n− 1) degrees of freedom.

2.2 Significance level and power

If, for instance, the degrees of freedom are n− 1 = 9, we know that when indeed the distribution is
normal and the mean is truly m0, the probability that Z > 2.82 is just 0.01. Thus, if we reject the
null hypothesis H0 : m = m0 whenever |Z| > 2.82, the probability of unduly rejecting H0 is 0.01.
We call this probability the significance level α or probability of type I error.
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Other than the significance level we are interested in the probability of type II error or β, the
probability of not rejecting H0 when in fact we should, because the alternative is true. Equivalently,
we are interested in the power or 1− β, probability of rejecting H0 when it is in fact false. Clearly,
this probability of rejection will depend on the alternative: H0 : m = 0 may be difficult to reject if
the true distribution has m = 0.01, but far more easy in m = 12, for instance. Thus, the power has
to be calculated for different values of m (or whichever other parameter is involved in our testing).

Now, if we compute the probability of rejection for all values of m we will have the power curve:
for m = m0, this probability of rejection is the significance level, for m 6= m0 it will be the power.
A single curve contains all the information about the performance of a test.

2.3 Significance level and power: nominal and real

Now, distributions are theoretical models which will rarely be more than approximations to the
prevailing real distribution. This means that nominal and real significance levels will ordinarily
differ. By nominal significance level we mean the theoretical significance level defined in the previous
section, which can be calculated under prescribed assumptions (such as normality of the population).
The real significance level is the true probability of rejecting H0 in the situation at hand, were the
distribution may not be the one we are assuming.

Ideally, we would like to use tests which are not overly sensitive to distributional assumptions.
In other words, we would like that even if the mother distribution is not really normal, the real
significance level be not far off the nominal significance.

We will learn in the sequel how to compute approximate real significance levels using the Monte
Carlo method introduced in Seminar 1. This will provide an easy method for checking sensitivity of
our test procedures to violation of the assumptions.

Even more interesting, we will learn how to calculate the approximate real power for any
alternative, under given conditions. This is important, because this is usually the only practical way
to approximate the power: even under precise distributional assumptions, power is in general not
easy to compute.

3 Monte Carlo approximations

3.1 Of the real significance level.

Consider the test statistic Z in (1). We have seen that if we are indeed taking a sample of size
n = 10 from a normal population with mean m = m0, then P (|Z| > 2.82) = 0.01.

Lets check that in this case Z takes values in the critical region [2.82,∞) with probability as
prescribed by the theory. To this effect, we will generate a large number of samples from the
distribution assumed by H0, compute the value of Z for each, and count how many fall in [2.82,∞).

Since we will need to compute Z many times for different samples and values of m0 we define a
function1 which takes a sample and value of m0 and returns the value of Z:

> t.stat <- function(sample, m0) {

n <- length(sample)

xbar <- mean(sample)

s2 <- sum( (sample-xbar)^2 ) / n

1We do this for didactical purposes. You have pre-defined functions in R for every conceivable purpose. In the case
at hand, rather than defining your own function, you can use the R pre-defined function t.test. We will see how
make use of it for Activity 2 in Section 4 below.

2



Statistics Applied to Economics Curso 2.020-2.021

s <- sqrt(s2)

Z <- (xbar-m0) * sqrt(n-1) / s

return(Z)

}

Observe now the following code. We will start defining everything that can change at the top,
then inside a loop generate random normal samples, compute values of the test statistic and check
how many fall inside the critical region. We will set the true mean equal to the hypothetical mean
and the critical region equal to the value which leaves a right tail of size α.

> N <- 10000 # Number of simulations

> n <- 10 # Sample size

> m0 <- 0 # Hypothetical mean

> m <- 0 # True mean

> alfa <- 0.01 # Desired alpha

> cr <- qt(1-alfa,df=n-1) # Start of critical region (one sided)

> cr

[1] 2.821438

Now we are all set; can write a loop to do repetitive work:

> Hits <- 0

> for (i in 1:N) {

sample <- rnorm(n,mean=m) # Generate random sample

if (t.stat(sample, m0) > cr) # Check whether Z in critical region

Hits <- Hits + 1 # If so, increase count

}

> prob <- Hits / N

> prob

[1] 0.0111

In prob we have computed the fraction of times the test statistic falls in the (nominal) size
α = 0.01 critical region. The value in prob is a Monte Carlo estimate of the real significance level.
Since the distributional assumptions are fulfilled, we should expect prob to be quite close to 0.01,
and this is indeed the case.

What would happen if the true distribution, rathen than normal, were U(−2, 2)? Let’s try:

> Hits <- 0

> for (i in 1:N) {

sample <- runif(n,min=-2, max=2) # Generate random sample

if (t.stat(sample, m0) > cr) # Check whether Z in critical region

Hits <- Hits + 1 # If so, increase count

}

> prob <- Hits / N

> prob

[1] 0.0142
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The value of prob is somewhat larger than 1%, but not much. One of the nice things of the
one-sample t-test is that it is fairly insensitive to lack of normality: it can be use in rather general
situations, and the real significance level of the test will not be far off the theoretical or nominal
significance level.

3.2 Of the power

Not only can we approximate the type I (or α) error, but also the power of the test. Sometimes the
power can be computed analytically2, but in real situations this is cumbersome. All we have to do
in the code above is replace m by a value different from the (null hypothesis) m0 and count hits in
the critical region. For instance, how often will the t-test detect that a N(m = 0.5, σ = 1) is not a
N(m = 0, σ = 1)? Let’s try (all omited values are the same as in the previous simulation):

> m <- 0.5 # True mean

> Hits <- 0

> for (i in 1:N) {

sample <- rnorm(n,mean=m) # Generate random sample

if (t.stat(sample, m0) > cr) # Check whether Z in critical region

Hits <- Hits + 1 # If so, increase count

}

> prob <- Hits / N

> prob

[1] 0.1634

So with only n = 10 observations, we can hardly tell apart a N(m = 0, σ = 1) and a N(m =
0.5, σ = 1): only about 16.34% will the difference be detected at the α = 0.01 significance level. As
you may guess, increasing n (or making m “more different” from m0) will increase the power. We
will use n = 50 in the next simulations.

3.3 Of the power curve

All we need to compute an approximation of the power curve is a second loop over values of m.

> n <- 50 # Sample size

> m.min <- 0.0 ; m.max <- 1.0 # Min and max

> vals <- seq(from=m.min, # Values of m to try; a vector.

to=m.max,

by=0.05)

> prob <- 0 * vals # Vector of the same dimension, to

> # keep values of OC curve

>

> for (k in 1:length(vals)) { # Loop over means

Hits <- 0 ; m <- vals[k]

for (i in 1:N) { # Loop over samples

sample <- rnorm(n,mean=m) # Generate random sample

if (t.stat(sample, m0) > cr) # Check whether Z in critical region

2The noncentral distributions that were briefly mentioned in class play a key role in power computations.
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Hits <- Hits + 1 # If so, increase count

}

prob[k] <- Hits / N

}

> plot(vals, prob,

type="l",

xlab="m",

ylab="Power")

Figure 1: Power curve for the test of H0 : m = 0 versus Ha : m > 0 for different values of m and
normal populations. The height of the curve above m = 0 is an estimate of the real significance
level (here coincident with the nominal significance level, as the samples are normal).
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The code above produces the graph in Figure 1. If the true distribution, instead of normal,
where centered at m0 = 0 but Cauchy with location parameter m,

fX(x) = 1
π

1
1 + (x−m)2

using the t-test for testing H0 : m = 0 versus Ha : m > 0 would give misleading results. To estimate
the power curve we only need to perform the same simulation aboved with the line

> sample <- rnorm(n,mean=m) # Generate random sample

replaced by:

> sample <- rcauchy(n, location=m) # Generate random sample
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Similarly, to simulate from uniforms U(m− 2,m+ 2) we could replace the same line by :

> sample <- runif(n, min=m-2, max=m+2) # Generate random sample

Figure 2 (code not shown) displays a comparison of the power in the normal, U(m− 2,m+ 2)
and the Cauchy case. It is apparent that there is a modest loss in power for the uniform distribution.
However, the lost of power is disastrous if the distribution is Cauchy. The t-test, although fairly
robust against non-normality, breaks in extreme cases of fat-tailed distributions.

Figure 2: Power curve for the rest of H0 : m = 0 versus Ha : m > 0 for different values of mean of a
normal distribution (black), uniform U(m−2,m+2) (green) and location m of a Cauchy distribution
(red). The height of the curve above m = 0 is an estimate of the real significance level. Notice the
much reduced power with the Cauchy.
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4 Practical details

4.1 Use of t.test, one sample problems.

For the simulations above we have coded t.stat and set the critical region ourselves. We can use
the standard R function t.test. The full description can be obtained with

> help(t.test)

We give some details here, however. You can invoke t.test with one or two arguments, depending
on whether you want a one population or a two population test. These arguments are respectively x

and y.
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For a one-sample t-test you have to provide only x. Compare here the results of our function
t.stat and t.test in a simple example in which H0 : m0 = 0 is tested against a two sided
alternative. Using our t.stat:

> sample1 <- rnorm(50,mean=0, sd=1)

> Z <- t.stat(sample1, m0=0)

> Z

[1] -1.335097

> 2 * (1 - pt(abs(Z), df=49))

[1] 0.1880144

Using the standard t.test we obtain:

> t.test(x=sample1, mu=0, alternative="two.sided")

One Sample t-test

data: sample1

t = -1.3351, df = 49, p-value = 0.188

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.4571451 0.0921867

sample estimates:

mean of x

-0.1824792

The results reported are the same, but t.test gives more detailed information, including degrees of
freedom, alternative tested, and p-value.

One advantage of using t.test which makes our life easier is that we need not explicitly set the
critical region: the function does it automatically, from the value of the argument alternative. In
order to check whether the test statistic falls in the critical region of size α we only have to check
whether the returned p-value is smaller than α.

In the case above, if we wanted to check whether the result is significant at the α = 0.05 level
(and increase Hits if it is), we would code:

> result <- t.test(x=sample1, mu=0, alternative="two.sided")

> if (result$p.value < 0.05) {

Hits <- Hits + 1

}

(All the information computed by t.test can be accessed in a like manner; it you want to see the
structure of the object returned by t.test above, you can type: str(result).)

7



Statistics Applied to Economics Curso 2.020-2.021

4.2 Use of t.test, two sample problems.

Function t.test and also be used for a two sample test. For instance, if you want to test
H0 : mx = my versus Ha : mx < my you can invoke:

> sample1 <- rnorm(50,mean=0, sd=1) # Sample first population

> sample2 <- rnorm(50,mean=0.3,sd=1) # Sample second population

> t.test(x=sample1, y=sample2, mu=0,

var.equal=TRUE,

alternative="less")

Two Sample t-test

data: sample1 and sample2

t = -2.9213, df = 98, p-value = 0.002163

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -0.2386522

sample estimates:

mean of x mean of y

0.07667092 0.62964592

The output contains a wealth of information: the value of the t statistic for a two sample test,
the estimated means, and the p-value under the assumption of equal variances3.

As before, checking whether the test statistic is inside the critical region is equivalent to checking
whether the p-value is smaller than the chosen significance level.

4.3 Reporting results of long simulations

Sometimes you want to report results of computations for various inputs. You can do it in several
ways. Suppose for instance that you want to compute xy for various values of x and y. If you know
beforehand what these values are, you can define a matrix to hold the results and print that matrix
at the very end. For instance, the following code prints a table of numbers along with their square
and cubir roots:

> x <- 1:4

> y <- c(1, 0.5, 1/3)

> results <- matrix(0, length(x), length(y))

> for (i in 1:length(x)) {

for (j in 1:length(y)) {

results[i,j] <- x[i]^y[j]

}

}

> print(results)

3Note that if equal variances are assumed, like in the standard t-test studied in class, we need to pass the argument
var.equal=TRUE; otherwise, an slightly different kind of test is performed. Testing equality of means with unequal
variances is a messy problem: you can google for “Behrens-Fisher” to get an idea of the solutions proposed.
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[,1] [,2] [,3]

[1,] 1 1.000000 1.000000

[2,] 2 1.414214 1.259921

[3,] 3 1.732051 1.442250

[4,] 4 2.000000 1.587401

5 Activity 2

You have seen that, barring extreme non-normality (such as in the case of the Cauchy), the power
of the t-test is not much degraded if normality fails. This is the case also in the case of two-sample
t-tests, which are not overly sensitive to lack of normality. They are, however, much more affected
by unequal population variances.

Now it is your turn. You have to simulate samples from two different populations, one N(0, 1)
and the other N(m = 0.5, σ2) and check what happens as σ2 is farther from 1. You will see that the
power of the test of H0 : mX = mY versus the (true) Ha : mX < mY degrades. You should provide
estimates of the power for the given alternative and six different values of σ2: 1, 1.2, 1.4, 1.6, 1.8,
2.0.

You should observe decreasing power as σ2 separates more from 1. Report the estimated powers
for all six values of σ2.

9


	Synopsis.
	Background
	Classical normal theory tests
	Significance level and power
	Significance level and power: nominal and real

	Monte Carlo approximations
	Of the real significance level.
	Of the power
	Of the power curve

	Practical details
	Use of t.test, one sample problems.
	Use of t.test, two sample problems.
	Reporting results of long simulations

	Activity 2

