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Content I

Poisson probability function

I Defined on non-negative integers, x = 0,1,2, . . . with
PX (x):

PX (x) =
e−λλx

x!

I Well defined; obviously non-negative, and:

∞∑
x=0

PX (x) =
∞∑

x=0

e−λλx

x!

= e−λ
(

1 +
λ

1!
+
λ2

2!
+ . . .

)
= e−λeλ = 1

How do we get last expression from the previous one?

Using a Taylor series expansion et = 1 + t + t2/2! + t3/3! + . . .

Historical notes

I Named after Siméon Denis Poisson
(1781-1840)

I French mathematician,
contemporaneous of Lagrange,
Laplace and Fourier.

I Did important work in many areas of
Mathematics.

I See
http://en.wikipedia.org/
wiki/Siméon_Denis_Poisson.

http://en.wikipedia.org/wiki/Sim�on_Denis_Poisson
http://en.wikipedia.org/wiki/Sim�on_Denis_Poisson


What does it look like?

> x <- 0:1
> dpois(x,lambda=3)
[1] 0.04978707 0.14936121
> x <- 0:20
> barplot(dpois(x,lambda=3),

col="yellow",
xlab="x",
ylab="P(x)",
main="Poisson P(x)")
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Moment generating function

ϕX (u)
def
= E [euX ] =

∞∑
x=0

euxPX (x) =
∞∑

x=0

eux e−λλx

x!

=
∞∑

x=0

e−λ(λeu)x

x!

= e−λ
∞∑

x=0

(λeu)x

x!
(1)

= e−λeλeu
(2)

= eλ(eu−1) (3)

How do we get (2) from (1) above?

Yet another use of et = 1 + t + t2/2! + t3/3! + . . ..

Mean and variance
I Remember:

α1 =

[
∂ϕX (u)

∂u

]
u=0

α2 =

[
∂2ϕX (u)

∂u2

]
u=0

I Hence,

α1 =

[
∂

∂u
eλ(eu−1)

]
u=0

=

[
∂ (λ(eu − 1))

∂u
× eλ(eu−1)

]
u=0

=
[
λeueλ(eu−1)

]
u=0

= λ

α2 =

[
∂2

∂u2 eλ(eu−1)

]
u=0

= λ+ λ2

How to obtain the variance from α1 = E [X ] and α2 = E [X2]?

m = α1 = λ and σ2 = α2 − (α1)2 = λ.

Sum of independent Poisson variables

I Let Xi ∼ P(λi) for i = 1, . . . ,n, independent of each other.
I Let X = X1 + . . .+ Xn. Then, X ∼ P(λ1 + . . .+ λn).
I Proof is easy:

ϕX (u) = ϕX1(u)× · · · × ϕXn (u)

= eλ1(eu−1) × · · · × eλn(eu−1)

= e(λ1+...+λn)(eu−1)

and we recognize in the last expression the mgf of a
Poisson random variable with λ = λ1 + . . .+ λn.

Would the average of X1, . . . , Xn be Poisson-distributed?

No, ϕX (u) = e(λ1+...+λn)(eu/n−1) which is not the mgf of a
Poisson.



Poisson as a limit of the binomial
I Remember: if we have a sequence of random variables Zn

and
lim

n→∞
ϕZn (u)→ ϕZ (u)

then the distribution of Zn approaches the distribution of Z
I Now, consider Zn ∼ b(p = λ/n,n), We have,

ϕZn (u) = [q + peu]n = [(1− p) + peu]n

= [1 + p(eu − 1)]n

=

[
1 +

λ

n
(eu − 1)

]n

lim
n→∞

ϕZn (u) = lim
n→∞

[
1 +

λ(eu − 1)

n

]n

= eλ(eu−1)

I Last expression is ϕZ (u) of a Poisson distribution with
parameter λ.

Remember what additional condition was required on ϕZ (u)?

It has to be continuous u = 0.

Practical use of the limiting distribution (I)

I Whenever np →∞, normal approximation better.
I Poisson approximation best for λ = np < 18.
I Particularly useful when np very small (in which case

normal approximation is quite poor).
I Discrete approximation with a discrete distribution: no

continuity corrections, no nothing.
I Poisson probabilities PX (x) = e−λλx/x! quite easy to

compute, even on a pocket calculator.
What problems would you anticipate calculating PX (x)?

Large factorials might be the only problem
(69! = 1.711225× 1098).

Practical use of the limiting distribution (II)

I Tables do exist.
I We have the usual assortment of {d,p,q,r}pois

functions in R, to assist with any computations.
I A useful recurrence:

PX (x ;λ) =
e−λλx

x!
=

e−λλ(x−1)

(x − 1)!︸ ︷︷ ︸
PX (x−1;λ)

×λ
x

so each probability can be obtained from the previous
multiplying by λ

x . (First one, PX (0;λ) = e−λ.)
I Avoids large factorials.

Practical use of the limiting distribution (III)

> dbinom(x=2,size=50,prob=0.1) # Exact binomial
[1] 0.0779429
> dpois(x=2,lambda=50*0.1) # Poisson approximation
[1] 0.08422434
> pnorm((2.5-5)/sqrt(50*0.1*.9)) - pnorm((1.5-5)/sqrt(4.5))
[1] 0.06981634
> dbinom(x=2,size=500,prob=0.01) # Exact binomial
[1] 0.08363103
> dpois(x=2,lambda=500*0.01) # Poisson approximation
[1] 0.08422434
> pnorm((2.5-5)/sqrt(500*0.01*.99)) - pnorm((1.5-5)/sqrt(4.95))
[1] 0.07273327



The “rare events” model

I Many units, n, with small probability p of failure, and
np < 18 give a Poisson-distributed number of units failing.

I Examples:
I Many soldiers, small probability of dying by horse kick⇒

number of soldiers dead approximately Poisson-distributed.
I Many phone lines, small probability of one of them being in

use⇒ simultaneaous calls placed at any one moment
Poisson-distributed.

I Many houses insured against fire, small probability of any
of them catching fire in the insurance period⇒ total
number of claims in that period Poisson-distributed.

I Arrival intervals i.i.d. exponentially distributed,
fX (x) = θe−θx ⇒ total number of arrivals in (T ,T + t)
Poisson-distributed with (T ,T + t) Poisson-distributed with
λ = θt .

Example 1 (I)

Consider a company with 120 workers. On average, they spend
10% of their time calling to the outside. They place calls
independently of each other.
I What is the mean value of the number of people

simultaneously calling outside?
I With 16 outgoing phone lines, what is the probability of

being able to service all calls?
I If the company is split in two divisions, with respectively 80

and 40 people and 10 and 6 phone lines, what’s the
probability of being able to service all calls?

I What are your conclusions? Is it better to provide a
centralized service or not?

Example 1 (II)

I What is the mean value of the
number of people simultaneously
calling outside?

I If there are 16 outgoing phone
lines, what is the probability of
being able to service all calls?

I Two divisions, respectively 80 and
40 people and 10 and 6 lines.
Probability of being able to service
all calls?

> 120 * 0.1
[1] 12
> #
> ppois(16,lambda=12)
[1] 0.898709
> #
> ppois(10,80*0.1) *

ppois(6,40*0.1)
[1] 0.7255885

Example 2

Your are auditing a company. They claim high quality of their
records, with a proportion of 0.1% at most containing errors.
You screen 4000 records, uncovering 6 mistakes (i.e., a
proportion of 0.15%, or 50% larger than their alleged error rate).
What would you conclude about the veracity of their claims?
I Assuming their claims are right, total number of errors in

4000 records Poisson distributed, with
λ = 4000× 0.001 = 4 in the worst case.

I If λ = 4, the probability of over 5 errors is
> 1 - ppois(5,lambda=4)
[1] 0.2148696

which is by no means small.
I There is no conclusive evidence to challenge their claim:

with λ = 4, 6 errors out of 4000 records is by no means
abnormal.



Example 3

Five hundred school children enjoy recreation. The probability
that any of them injures himself and comes to the infirmary of
the school to have a wound bandaged is p = 0.01. How many
bandages must the infirmary stock at the beginning of the day
so that the probability of running out is less than 0.001?
I The number of children injured is distributed as P(λ = 5).
I Bandages required are less than or equal

> qpois(0.999,lambda=5)
[1] 13

with probability 0.999, so enough to stock 13.
I Let’s check:

> 1 - ppois(12:13,lambda=5)
[1] 0.002018852 0.000697990

We see indeed that 12 would not be enough and 13 is.

Example 4

The probability of a type of cancer in children of school age is
0.001 per children-year (=1 out of 1000 children on the
average). You are suspicious of the mobile phone antennas
erected in the vicinity of your district public shool, and find out
that out of 400 children, 3 have contracted the disease. Is that
an abnormal incidence rate?
I The number of cancer cases is distributed as P(λ = 0.4).
I The probability of less than or equal to 0, 1, 2, 3, 4 cases

is:
> ppois(0:4,lambda=0.4)
[1] 0.6703200 0.9384481 0.9920737 0.9992237 0.9999388

so 3 cases is fairly rare, happening by pure chance less
than 1% of the time.

Example 4 (continued)
Setup like of the previous example. You collect data on all 1300
schools with 400 children each within 200m of mobile phone
antennas. Have 540 cases of cancer in all, worst one alone had
4 cases. What would you say?
I Total number of cases is P(λ = 0.4× 1300). Then,

> 1 - ppois(539,lambda=1300*0.4)
[1] 0.1956853

doesn’t look abnormal; expected about 19% of the time.
I The school with 4 cases does look abnormal in isolation:

> 1 - ppois(3,lambda=0.4)
[1] 0.0007762514

I As the worst case among the 1300 schools examined, it
can no longer be considered abnormal:
> 1 - ( ppois(3,lambda=0.4) )^1300
[1] 0.6356057

Reminder of some useful relationships

I b(p,n)
d→ P(λ = np) as n→∞ with np < 18.

I b(p,n)
d→ N(np,npq) as n→∞ with np > 18.

I P(λ)
d→ N(λ, λ) as λ→∞.

I If Zn ∼ b(p,n), then Zn/n
p→ p as n→∞.



What is ahead of us

I We need to introduce quite a few distributions.
I The fastest presentation requires that for a while we don’t

try to motivate each one.
I You may have a feeling of lack of purpose. . .
I . . .but trust me:
I It is much the same as having to learn the periodic table of

elements before any serious work in Chemistry. . .
I . . .or the rudiments of music before you can play piano.
I The roots of knowledge are bitter, but the fruit is very sweet

(Rabindranath Tagore)

The gamma function Γ(r)

I Defined as:
Γ(r) =

∫ ∞
0

t r−1e−tdt

I Defined for all r , although only for r > 0 it will be of interest
to us.

I Sometimes called Euler integral of the second kind.
I Does not have closed form; value can be computed

analytically for certain values of r , numerically for others.
I Interestingly, Γ(r) = (r − 1)! for natural r .

How do you think Γ(r) changes with r?

Clearly, Γ(r)→∞ as r →∞, but also as r → 0.

Γ(r) in R

> gamma(5)
[1] 24
> factorial(4)
[1] 24
> curve(gamma,from=0.01,

to=6,n=200,
ylab=expression(

Gamma(r)
),

xlab="r",
main="Gamma function")
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The gamma distribution γ(a, r) (I).

I It is clear that

FX (x) =
1

Γ(r)

∫ x

0
t r−1e−tdt

is a well defined distribution on [0,∞).
I If we make the change t → at for a > 0 right hand side still

defines the γ(a, r) distribution function:

ar

Γ(r)

∫ x

0
t r−1e−atdt

I Density function therefore is:

fX (x) =
ar

Γ(r)
t r−1e−at



The gamma distribution γ(a, r) (II).

I Alternative parameterizations:

fX (x) =
ar

Γ(r)
t r−1e−at

fX (x) =
1

Γ(r)sr t r−1e−t/s

I In either case, r is the “shape” parameter and a (or s) the
“scale” or “rate” parameter.

I Important to check definition when using tables. . .
I . . .although you will rarely use the γ(a, r) directly.

The gamma distribution γ(a, r) in R

I Usual assortment of [d,p,q,r]gamma functions.
I Sintax is, e.g. dgamma(x, shape, rate, scale)

fX (x) =
ar

Γ(r)
t r−1e−at

fX (x) =
1

Γ(r)sr t r−1e−t/s

I In either case, r is the “shape” parameter and a the “rate”
(or s is the “scale”) parameter.

I Only one of rate or scale needs to be specified.

What does the γ(a, r) look like? (I)

> gammar0.9 <- function(x) {
dgamma(x,shape=0.9,scale=1)
}

> curve(gammar0.9,from=0.01,
to=6,n=200,
ylab="f(x)",
xlab="x",
main="Gamma densities")
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What does the γ(a, r) look like? (II)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Gamma densities with varying shape r

x

f(
x)

γ(a=1, r=0.8)

γ(1, 1)

γ(a=1, r=1.5)
γ(a=1, r=2.5)



What does the γ(a, r) look like? (III)
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Moment generating function of the γ(a, r) (I).

ϕX (u) = E [euX ] =

∫ ∞
o

ar

Γ(r)
x r−1e−axeuxdx

=
ar

Γ(r)

∫ ∞
o

x r−1e−(a−u)xdx

=
ar

Γ(r)

[
(a− u)r

Γ(r)

]−1

=
(

1− u
a

)−r

See how the integral went away?

It is equal to content within brackets in next-to-last expression.

Moment generating function of the γ(a, r) (II).

I Let X = X1 + . . .+ Xn independent gamma random
variables with equal scale parameter and respectively
r1, . . . , rn as shape parameter. Then:

ϕX (u) =
(

1− u
a

)−r1
· · ·
(

1− u
a

)−rn

=
(

1− u
a

)−(r1+...+rn)

so X is γ(a, r1 + . . .+ rn) distributed.
I The same does not hold if the scale parameters are not

equal.

Moment generating function of the γ(a, r) (III).

I Let Y = cX with X ∼ γ(a, r). Then Y ∼ γ(a/c, r).
I Simple rescaling of a gamma gives again a gamma with

arbitrary first parameter.
I Proof is trivial:

ϕcX (u) = E [eucX ] = ϕX (cu)

=
(

1− cu
a

)−r

=

(
1− u

a/c

)−r

so cX is γ(a/c, r) distributed.



Mean and variance of γ(a, r).

I Mean and variance are now easy to compute:[
ϕ′X (u)

]
u=0 =

[
−r
(

1− u
a

)−r−1
(
−1

a

)]
u=0

=
r
a[

ϕ′′X (u)
]

u=0 =

[
r(r + 1)

(
1− u

a

)−r−2
(
−1

a

)2
]

u=0

=
r2

a2 +
r

a2

Hence, m = r/a and σ2 = α2 − (α1)2 = r/a2.
I It can also be checked that the mode is at r−1

a (or zero, in
case r < 1 and monotone decreasing density).

How would you choose γ(a, r) with mean 2 and variance 5?

Matching moments.

Exponential distribution exp(λ) (I)

I A very important particular case occurs when r = 1. Then,

γ(a, r = 1) =
ar

Γ(r)
x r−1e−ax = ae−ax

I Conventionally, a denoted by λ. Distribution called
exponential, exp(λ).

I Alternative in terms of θ = 1/λ:

fX (x) = λe−λx =
1
θ

e−x/θ

I If we stick with the λ-parameterization, m = 1/λ and
σ2 = 1/λ2.

I Clearly, FX (x) = 1− e−λx .

Exponential distribution exp(λ) (II)

I The moment generating function comes straight from the
γ(a = λ, r = 1) general case:

ϕX (u) =
(

1− u
λ

)−1

I With fX (x) = λe−λx and FX (x) = 1− e−λx no need of
tables; however, still the usual R functions
{d,p,q,r}exp.

I Sintax: dexp(x,rate) where rate is λ.
What if we sum n independent exponential variables with the same λ?

We get a variable distributed as γ(λ,n).

Square-normal distribution

I If X ∼ N(0,1), what is the distribution of Y = X 2?
I FY (y) = P(Y ≤ y) = P(X 2 ≤ y) = P(−√y ≤ X ≤ √y).
I Therefore FY (y) = Φ(

√
y)− Φ(−√y), and

fY (y) = φ(
√

y)× 1
2
√

y
− φ(−

√
y)×

(
− 1

2
√

y

)
= φ(

√
y)

1
√

y

=
1√
2π

y−1/2e−
y
2 (y > 0)

What density is this a particular case of?

It is clearly a γ(a = 1
2 , r = 1

2).



Things you can easily check:

I If Y is square-normal, E [Y ] = 1.
(Try it both ways, using the “gamma ancestry” of Y and the
direct approach: remember Y = X 2 and X ∼ N(0,1)).

I If Y is square-normal, its variance is 2.
I If X1, . . . ,Xn are i.i.d N(0,1), then Y = X 2

1 + . . .+ X 2
n is

distributed as γ(1
2 ,

n
2 ).

I If X is exponential(λ), 2λX is γ(1
2 ,1).

I Mimic the method used to derive the square-normal
density to find the log-normal density, i.e., the density of Y
such that loge(Y ) is normal.

The χ2
n distribution

I It is just the γ(a = 1
2 , r = n

2 ) obtained in last slide. . .
I . . .or, if you prefer, the distribution of the sum of n

independent N(0,1) squared, each of which is
γ(a = 1

2 , r = 1
2)

I As particular case of a γ(a, r) we know:

m = n σ2 = 2n ϕY (u) = (1− 2u)−
n
2

m = r/a σ2 = r/a2 ϕY (u) =
(
1− u

a

)−r

I n usually called “degrees of freedom”.

What does it look like? (I)

I The density is,

fX (x) =

(1
2

) n
2

Γ(n
2 )

x
n
2−1e−x/2

I As it is a γ(a = 1
2 , r = n

2 ), will be monotone decreasing for
r ≤ 1 (⇒ n ≤ 2).

I For n > 2 a single maximum and a long right tail
(right-skewed).

I Becomes closer to symmetric as n grows.

What do you think the χ2
n converges to as n →∞?

χ2
n

d→ N(n,2n) by the CLT.

What does it look like? (II)

> chisqn <- function(x) {
dchisq(x,df=n)

}
> n <- 5
> curve(chisqn,

from=0.0,to=30,n=200,
ylab="f(x)",xlab="x",
main=expression(chi[n]^2))

> n <- 10
> curve(chisqn,from=0.0,col="red",

to=30,n=200,add=TRUE)
> n <- 20
> curve(chisqn,from=0.0,col="blue",

to=30,n=200,add=TRUE)
> text(6,0.14,"n=5")
> text(13,0.08,"n=10",col="red")
> text(21,0.07,"n=20",col="blue")
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Non-central χ2
n variables

I The ordinary or “central” χ2
n is the sum of n independent

N(0,1) squared.
I If the squared normal variables have non-zero mean, we

have instead the “non central” chi square.
I If Y = X 2

1 + . . .+ X 2
n with Xi ∼ N(mi ,1), then Y ∼ χ2

n(δ)
(the “non central” chi square).

I δ = m2
1 + . . .+ m2

n is the so-called “non-centrality
parameter”.

I Some tables/books define the non-centrality parameter as
δ = 1

2(m2
1 + . . .+ m2

n), so check.

χ2
n in R

Usual set of functions: {d,p,q,r}chisq.

> dchisq(15.3,12)
[1] 0.05196885
> pchisq(15.3,12)
[1] 0.7745611
> qchisq(0.99,12)
[1] 26.21697
> qchisq(0.99,12,ncp=15)
[1] 52.15618

Snedecor’s Fm,n
I The ratio of two χ2

m and χ2
n independent of each other each

divided by their degrees of freedom,

χ2
m/m
χ2

n/n

follows a distribution named “Snedecor’s Fm,n” (after
George W. Snedecor (1882 -1974)).

I Fairly complex density,

fX (x) =
m

m
2 n

n
2 Γ
(m+n

2

)
Γ
(m

2

)
Γ
(n

2

) xm/2−1(n + mx)−(n+n)/2

I For n > 2, m = n/(n − 2) if n > 2 and for n > 4,

σ2 =
2n2(m + n − 2)

m(n − 2)2(n − 4)

Use of tables for Fm,n

I Same as we did not need tables of b(p,n) for p > 0.5, we
can do with tables for the Fm,n for α < 0.5 and obtain the
rest indirectly.

I If X ∼ Fm,n, trick is to use

1− α = P(X < Fαm,n) = P
(
χ2

m/m
χ2

n/n
< Fαm,n

)
= P

(
χ2

n/n
χ2

m/m
>

1
Fαm,n

)
This shows,

1
Fαm,n

= F1−α
n,m



Non-central versions of Fm,n

I If the χ2 in the numerator has non-centrality parameter δ,
the resulting Fm,n is called non-central with the same
non-centrality parameter.

I If both numerator and denominator are non-central χ2, the
ratio is a doubly non-central Fm,n.

I Tables in general for only the ordinary or central case.

Fm,n in R

As usual, {d,p,q,r}f functions.

> pf(3.23, 5, 12) # Prob left 3.23 in F(5;12)
[1] 0.9554027
> qf(0.95, 5, 12) # Value leaving a tail of 0.05
[1] 3.105875
> qf(0.99, 5, 12) # Id. for tail of 0.01
[1] 5.064343
> qf(0.99, 5, 12, 8) # Id. for a non-central F
[1] 11.62582
> # with ncp=8

What does the Fm,n look like? (I)

I If n not too small, shape close to scaled χ2
m.

I If both m and n large, closely concentrated around 1.
I Right-skewed.

What does the Fm,n look like? (II)

> sned <- function(x) {
df(x,m,n)

}
> m <- 8 ; n <- 20
> curve(sned,

from=0.0,to=6,n=200,
ylab="f(x)",xlab="x",
main="Snedecor's F")

> m <- 1 ; n <- 8
> curve(sned,from=0.0,col="red",

to=6,n=200,add=TRUE)
> m <- 8 ; n <- 2
> curve(sned,from=0.0,col="blue",

to=6,n=200,add=TRUE)
> text(3.5,0.11,"m=8,n=2",col="blue")
> text(2.3,0.25,"m=8,n=20",col="black")
> text(1.0,0.11,"m=1,n=8",col="red")
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Student’s tn distribution

I Distribution of the ratio of independent N(0,1) and
√
χ2

n/n
random variables:

tn =
N(0,1)√
χ2

n/n

I Named after W. Gosset (1876-1937), who usually signed
his work as “Student”.

I Has density,

fX (x) =
Γ
(n+1

2

)
√

nπΓ
(n

2

) (1 +
x2

n

)− 1
2 (n+1)

What does Student’s tn look like?

> tx <- function(x) {
dt(x,n)

}
> n <- 20
> curve(tx,

from=-6,to=6,n=200,
ylab="f(x)",xlab="x",
main="Student's t with n d.f.")

> n <- 5
> curve(tx,from=-6,col="red",

to=6,n=200,add=TRUE)
> n <- 1
> curve(tx,from=-6,col="blue",

to=6,n=200,add=TRUE)
> text(0.15,0.12,"n=1",col="blue")
> text(2.3,0.25,"n=20",col="black")
> text(2.1,0.11,"n=5",col="red")

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Student's t with n d.f.

x

f(
x)

n=1

n=20

n=5

Moments of the tn distribution

I Not all moments exist for all n.
I As an striking example, when n = 1,

fX (x) =
Γ
(n+1

2

)
√

nπΓ
(n

2

) (1 +
x2

n

)− 1
2 (n+1)

=
1
π

1
1 + x2

is the Cauchy distribution, and has no mean!
I For greater n, higher order moments are non existent.

Reminder of some useful relationships

I t2
n = F1,n

I tn approaches a N(0,1) as n→∞.
I Fm,n approaches a χ2

m/m as n→∞.
I If X ∼ γ(a, r) then cX ∼ γ(a/c, r).
I In particular, sum of exponentials, = γ(λ,1), can be turned

into a χ2
2 multiplying by a constant.

I F1−α
m,n = 1

Fαn,m



Scientific knowledge is objective, reproducible

I In many branches of science, reproducibility is easy.
I Hydrogen, H, boils at −253C, helium, He, at −269C.
I Any experimenter, anywhere, anytime, can reproduce

that result.
I He will always boil at lower temperature than H.
I An inequivocal statement can be made to this effect.
I This is a deterministic phenomenon.

Not all phenomena are deterministic

I The same coin, in exactly the same circumstances, as far
as it is feasible to check, sometimes will fall heads,
sometimes will fall tails.

I We call phenomena such as this “random”.
I Randomness is very tightly woven in the fabric of Nature.
I Even at the elementary particle level, of two exactly looking

radioactive atoms, one may disintegrate in (t , t + ∆t) while
the other may not.

I Individual outcomes of random events are impossible to
predict, which seems to break all chances of reproducibility.

Can we make meaningful statements with random
events?

I Two dice, A and B. A is “loaded” so that it will tend to give
6 more easily than B.

I Can we say that A produces more 6 results than B?
I Certainly, not in a reproducible way. In 10 throws, B may

produce more 6’s. Or in 20 throws. Or in 100 throws.
I However, we imagine that the random mechanism

underlying A will in the long run produce more 6’s than will
the case with B. The relative frequency of 6 with A will be
larger that with B in the long run.

I Probabilities, the idealized limits of these long run
frequencies, are our model.

I Therefore we state our suspicion as: “We believe
PA(6) > PB(6)”, in terms of a model.

Two very important points:

1. All statements we make are phrased in terms of the
parameters in our model (in this case, the probabilities
PA(6) and PB(6) of getting a 6 with either die).

2. No way of checking for sure whether PA(6) > PB(6). But, if
that were true, sampling evidence would tend to show
more 6’s with die A than with B in the long run.

A statistician can never establish a fact for sure, only gather
evidence which supports (or conflicts with) a hypothesis.



Looking only at data does not support meaningful
answers

I Consider this (fictional) data on proportion of deaths in
traffic accidents:

1988 1989 1991 19921990
Seat belt

introduction

0.088 0.075 0.099 0.055

I Did the introduction of seat belts diminish deaths?
I 0.099 > 0.075
I On the other hand, 0.055 < 0.088 . . .
I . . .and 0.088 + 0.075 > 0.099 + 0.055

We formulate problems in terms of models!

I Proportions of deaths keep changing; they are “fluid”.
I We need something “fix” to hold on.
I We imagine deaths before and after seat belt introduction

are generated by (possibly different) random mechanisms.
That’s our model.

I Proportions tend to stabilize around fixed, “solid”
probabilities.

I Simple model: P[Death] = p0 before, P[Death] = p1 after.
I Now we can ask ourselves: is p0 6= p1? (Or >, or < as the

case may be.)

To summarize so far. . .

I Certain phenomena are “random”; in situations apparently
identical, the outcome changes.

I However, in long series of repetitions relative frequencies
seem to settle around fixed numbers.

I Probabilities are a model for this.
I We phrase our questions and problems in terms of what is

permanent: the probabilities or the parameters of the
model.

The beauty of the whole thing

I Without a model, we would have to fill a
tank to measure capacity.

I Geometry tells us V = 4
3πr3. Much

easier!
I We do not say that the tank is an

sphere.
I We do say that Euclidean geometry

(and the formulae developed for
spheres) work to a good approximation
for “spherical” real objects.

I Statistical models are similar.

Come to think of it, that purely intelectual constructions
tell so much about the real world is a wonder!



Turning questions into statistical inference problems

I Our models will usually be distributions, some of whose
parameters are unknown.

I Our questions can usually be phrased in terms of values of
those parameters.
I What is the average mortality for seat belt users?
⇔What is pUsers? (estimation problem)

I Do seat belts reduce mortality in traffic accidents?
⇔ Is pUsers < pNonUsers? (hypothesis test problem)

I Other problems not quite fitting in either category (e.g.,
serialization)

I If model is “good”, answering questions about the model
will enlighten us about the real world.

Is all this that new?

I No, it isn’t. All along we have introduced in problems these
ideas without making them explicit.

I If you think for a moment, many previous examples were
phrased in a manner suggesting inferential problems.

Can you think of some instances?

Problem regarding cancer incidence in a school was
abnormally high.

Estimating the proportion of people who would vote for a
candidate.

Problem in which we were asked to check if mean service time
in a car repair shop was m = 1/λ = 65 minutes.

To summarize. . .

I Parameters pertain to the population (= the model)
I What we observe is the empirical evidence available:

samples.
I A sample is a collection of elements generated by the

population, usually through random sampling.
I From what we observe in the sample, we infer properties of

the population, the model.

Point and interval estimation

I Sometimes we are content with a value “close” to the
(unattainable) value of the true parameter. Then we have a
problem of point estimation.

I Sometimes we want an interval that most of the time (with
given confidence) will cover the true value of the
parameter. This is an interval estimation problem.

I Common sense will sometimes guide us in choosing an
estimator. . .

I . . .but a more principled approach is desirable.



Samples and statistics

I A sample is a randomly chosen set from the population.
I Capital letters denote random values the members of the

sample can yield: ~X = (X1,X2, . . . ,Xn).
I Lower case letters, ~x = (x1, x2, . . . , xn), denote the actual,

fixed values obtained in a concrete sample taken.
I A statistic is a function of the sample: S = S(~X ) or

s = s(~x). Before the sample is taken, it is a random
variable; after the sample is taken, it becomes a number
(or vector of numbers)

Estimators and estimates

I An statistic designed to be “close” to the value of a
parameter is an estimator.

I The value it takes is an estimate.
I Example: X = (X1 + X2 + . . .+ Xn)/n is a (usually good)

estimator of the mean of a distribution. Given a concrete
sample x1, . . . , xn, x = 5.8 is an estimate.

I With different samples, the same estimator will produce
different estimates each time.

Methods for choosing point estimators

I What we choose as an estimator depends on our goals
and loss function (= how much cost errors).

I For didactical reasons, we will look first at some recipes,
then study their properties.

I Two important estimators:
I Method of moments.
I Method of maximum likelihood.

I Least squares method is a particular case of the method of
moments.

Method of moments: motivation (I)

I We think that a sample comes from a certain family of
distributions.

I We have to choose one member of that family (for
instance, one particular Poisson from the family of all
Poisson distributions)

I Want the one that is “closest” in some sense to observed
data.

I Makes sense to match theoretical moments to empirical
moments. After all, moments determine the distribution.

I Usually lower order moments best (and simpler).



Method of moments (II)

I Equate moments of the distribution (usually function of
parameters) to sample moments.

I Solve for the parameters.
I Need as many equations as there are parameters.
I Example: P(λ), sample of n observations.

m = λ =
X1 + X2 + . . .+ Xn

n
= X

I Could also use,

λ+ λ2 =
1
n

n∑
i=1

X 2
i

Usually lower order moments best (and simpler).

Method of moments (III)

I Example: estimate m and σ2 of N(m, σ2).
I Now we need two equations:

m =
X1 + X2 + . . .+ Xn

n

σ2 + m2 =
1
n

n∑
i=1

X 2
i

from which

m̂ = X

σ̂2 =
1
n

n∑
i=1

X 2
i − X

2
=

1
n

n∑
i=1

(Xi − X )2

Method of moments (IV)

I Example: estimate θ in a U(0, θ).
I The mean is m = θ/2. Therefore,

θ

2
=

X1 + X2 + . . .+ Xn

n
θ̂ = 2X

I Not a particularly good estimator, as we will see.

Method of moments (V)

I Example: estimate λ in a exp(λ).
I The mean is m = 1/λ. Therefore,

1
λ

=
X1 + X2 + . . .+ Xn

n

λ̂ =
1
X



Method of moments (VI)

I Example: estimate a and r in a γ(a, r).
I Remember that m = r/a and σ2 = r/a2. Therefore,

r
a

=
X1 + X2 + . . .+ Xn

n
r

a2 +
r2

a2 =
1
n

n∑
i=1

X 2
i

I We can solve for a and r to obtain:

â = r/X

r̂ =
X

2

n−1
∑n

i=1 X 2
i − X

2

Method of moments (VII)

I Sometimes, method just don’t work!
I For instance, if we try to estimate c from a density

fX (x) =
1
π

1
1 + (x − c)2

we will get nowhere.
I Some distributions have no moments, so nothing to match.
I In case at hand, we could use a censored (or trimmed

mean), like the median.

Method of maximum likelihood (I)

X1

X2

X3
X4

X5
X6

X1

X2

X3X4

X5

X6

I We are allowed to sample one of the two urns, but we are
not told which one it is. We pick one ball which happens to
be grey

What would be your guess?

Right urn, as it can generate grey balls more easily.

Method of maximum likelihood (II)

I Logic underlying previous choice is maximum likelihood
logic.

When confronted to two or more states of na-
ture which may have produced a given evidence,
we choose the one(s) with optimal capability to
generate such evidence.

I Both urns could generate a grey ball, but the second one
does so much more easily.

I Why assume that something “strange” has happened if we
can see the evidence as the outcome of something
“common”?



Method of maximum likelihood (III)

I If joint density of a given sample is f (~x ; θ), θ ∈ Θ, we call
likelihood function f (~x ; θ) seen as a funcion of θ for given
~x .

I To maximize the likelihood is tantamount to choosing the θ
which gives maximum density to the observed sample.

I Maximizing θ is maximum likelihood estimate, θ̂MLE .
I f (~x ; θ) and log f (~x ; θ) both achieve their maximum for the

same value of θ. Usually easier to maximize the second.

Likelihood example: binomial distribution (I)

> n <- 10 ; x <- 7
> binom <- function(p) {
l <- choose(n,x) * p^x *

(1-p)^(n-x)
return(l)

}
> curve(binom,from=0.00,

to=1,n=200,
ylab="Likelihood",
xlab="p",
main="Binomial likelihood")

> abline(v=x/n,col="red") 0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Binomial likelihood

p

Li
ke

lih
oo

d

What would happen with different values of x and n?

Maximum always at x/n, sharper peak as n grows.

Likelihood example: binomial (II)
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

n

x



px(1 − p)(n−x)

x/n = 0.7

Are the likelihood functions like density functions?

Clearly not; areas below change, not always 1.

Example: MLE of p with x1, x2, . . . , xn i.i.d. b(p)

f (~x ; p) =
n∏

i=1

pxi (1− p)1−xi

log f (~x ; p) =
n∑

i=1

xi log(p) +

(
n −

n∑
i=1

xi

)
log(1− p)

∂ log f (~x ; p)

∂p
=

∑n
i=1 xi

p
−

n −
∑n

i=1 xi

1− p
= 0

p̂MLE =

∑n
i=1 xi

n

Do we need to know all x1, . . . , xn in order to compute the MLE?

Only
∑n

i=1 xi is necessary to compute the MLE.



Example: MLE of λ with x1, x2, . . . , xn i.i.d. P(λ)

f (~x ;λ) =
n∏

i=1

e−λλxi

xi !

log f (~x ;λ) = −nλ+
n∑

i=1

xi log(λ)−
n∑

i=1

log(xi !)

∂ log f (~x ;λ)

∂λ
= −n +

∑n
i=1 xi

λ
= 0

λ̂MLE =

∑n
i=1 xi

n
= x

Do we need to know all x1, . . . , xn in order to compute the MLE?

Only
∑n

i=1 xi is necessary to compute the MLE.

Example: MLE of m, σ2 with x1, . . . , xn i.i.d. N(m, σ2)

f (~x ; m, σ2) =
n∏

i=1

1
σ
√

2π
e−(xi−m)2/2σ2

log f (~x ; m, σ2) = −n
2

log(σ2)− n
2

log(2π)−
n∑

i=1

(xi −m)2

2σ2

∂ log f (~x ; m, σ2)

∂m
=

∑n
i=1(xi −m)

σ2 = 0

∂ log f (~x ; m, σ2)

∂σ2 = − n
2σ2 +

∑n
i=1(xi −m)2

2σ4 = 0

whence

m̂MLE =

∑n
i=1 xi

n
= x σ̂2

MLE =

∑n
i=1(xi − x)2

n

Do we need to know all x1, . . . , xn in order to compute the MLE?

Only
∑n

i=1 xi and
∑n

i=1(xi − x)2 necessary.

Example: MLE of θ with X1, . . . ,Xn i.i.d. U(0, θ)

I Likelihood function not as
usual.

I Not differentiable.
I Pick maximum by inspection.
I x(1), . . . , x(n) called “order

statistics”.
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θ̂ = x(n)

Do we need to know all x1, . . . , xn in order to compute the MLE?

Only one (x(n), the largest) is necessary!

Example: MLE of a in a γ(a, r)

f (~x ; a, r) =
n∏

i=1

ar

Γ(r)
x r−1

i e−xi/a =
arn

(Γ(r))n

(
n∏

i=1

xi

)r−1

e−
∑n

i=1 xi/a

log f (~x ; a, r) = rn log(a)− n log Γ(r) + (r − 1)
n∑

i=1

log(xi)−
∑n

i=1 xi

a

∂ log f (~x ; a, r)

∂a
=

rn
a
−
∑n

i=1 xi

a2 = 0

∂ log f (~x ; a, r)

∂r
= n log(a)− n

∂ log Γ(r)

∂r
+

n∑
i=1

log(xi) = 0

Given r , âMLE =
∑n

i=1 Xi
rn = X

r , different from moment estimator.
(r̂MLE is harder, as it involves the digamma function
∂ log Γ(r)/∂r .)



MLE and parameter transformations

I We may have different choices of parameters. For
instance, in a binomial of given size n, we may choose as
the parameter p, but also the odds θ = p

1−p = θ(p).
I Theorem. If the function relating θ and p is 1-1 (and has

therefore has inverse), θ̂MLE = θ(p̂MLE ).
I Indeed, if we denote by `(p;~x) the likelihood and replace p

by θ−1(θ), clearly the maximum of `(θ−1(θ);~x) will still be
attained for a value of θ making θ−1(θ) = p̂MLE , and
therefore θ̂MLE = θ(p̂MLE ).

I Nice property. In the binomial example, p̂MLE = X/n, and
the MLE of the odds is just: θ̂MLE = p̂MLE

1−p̂MLE
.

Can we always use the MLE estimator?

I In principle, yes. In practice, it might be too complex.
I As an striking example, consider again the Cauchy

distribution with location θ for which the moment estimator
failed.

fX (x) =
1
π

1
1 + (x − θ)2

I If we try to write,

`(θ, ~x) =
n∏

i=1

(
1
π

1
1 + (xi − θ)2

)
even for a fairly small n we will get a terribly complex
expression.

I No hope to maximize that analitycally.

Numerical optimization

> x <- rcauchy(n=15, location=3)
> thetas <- seq(from=-6,to=6,

length.out=150)
> loglik <- function(theta) {

sum(-log(pi*(1+(x-theta)^2)))}
> plot(thetas,

sapply(thetas,FUN=loglik),
type="l",ylab="",
main="Log verosimilitud",
xlab=expression(theta))

> abline(v=3,col="red")
> MLE <- optimize(loglik,lower=-6,

upper=6, maximum=TRUE)
> abline(v=MLE$maximum, col="green")
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Unbiasedness (II)
I In principle a desirable property. . .
I . . .but sometimes we may prefer a biased estimator.
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Which one would you prefer?

If squared error loss, E |θ̂ − θ|2, we might prefer θ̂1, even if
biased.

Unbiasedness (III)

I In a P(λ), λ̂ = X is unbiased.
I In a N(m, σ2), m̂ = X is unbiased.
I In a N(m, σ2), σ̂2

MLE = 1
n
∑n

i=1(Xi − X )2 is biased.
I σ̂2

∗ = 1
n−1

∑n
i=1(Xi − X )2 is unbiased; σ̂2

MLE is
asymptotically unbiased.

I In a exp(λ), λ̂ = 1
X

is biased;

E [λ̂] = E
[

1
X

]
6= 1

E [X ]

I In general, if g is a non-linear function,

E [θ̂] = θ 6⇒ E [g(θ̂)] = g(θ)

A digression: Jensen’s inequality

I In some cases the sign of the bias is predictable.
I Jensen’s inequality: If g(x) is a convex function and X is

any random variable,

E [g(X )] ≥ g (E [X ])

I The inequality is strict for stric convexity and reversed for
concave functions.

I Example: g(x) = 1/x is convex, so

E [g(X )] = E [1/X ] ≥ 1/E [X ] = g
(
E [X ]

)

Unbiasedness (IV)

I Among two unbiased estimators, we would prefer the one
with smaller variance.

I If any of both are biased, we have to take this into account.
I One way is to select the one with minimum mean squared

error (MSE).

MSE(ĉ) = E [(ĉ − c)2]

= E [(ĉ − E(ĉ) + E(ĉ)− c)2]

= E [ĉ − E(ĉ)]2 + E [E(ĉ)− c)]2

= σ2
ĉ + (bias(ĉ))2

What implicit assumption does MSE about gravity of estimation error?

“Twice as large, four times as bad.” Arbitrary, mathematically
convenient.



Even “good” estimators may be biased

I Estimators generally enjoying good properties may
nonetheless be biased.

I An example is θ̂MLE in a U(0, θ). We have seen that
θ̂MLE = X(n). Since always X(n) ≤ θ, it is clear that
E [X(n)] < θ.

I Quite often MLE is biased, although in general it is
asymptotically unbiased.

Consistency (I) (reminder: probability limits)

I We say that the limit in probability of a sequence or
random variables {Zn} is Z if for any ε > 0, η > 0 there is
N such that for n > N:

P(|Zn − Z | < ε) ≥ 1− η

I In plain English: if taking sufficiently advanced terms of
{Zn} we can be within ε of Z with probability as close to 1
as we wish.

I Compare with usual notion of limit in mathematical
analysis.

I Usual notation is Zn
p→ Z or plim(Zn) = Z .

Consistency (II)

I θ̂n denotes an estimator of θ based on a sample of size n.
For instance, we might have

θ̂n =
X1 + X2 + . . .+ Xn

n

I θ̂n is consistent if θ̂n
p→ θ

I In plain English: if by increasing the sample size we can
obtain arbitrary precision with as close to 1 confidence as
we choose.

I In general, consistency is the very least we ask for. (We
want to be rewarded for our effort in sampling!)

Consistency (III)

I We can usually show consistency by using:
1. The laws of large numbers
2. Tchebychev inequality.

I Consistency does not imply unbiasedness.
How can we have consistency and not unbiasedness?

Think of θ̂n taking the true value θ with probability 1− 1
n and the

value n with probability 1
n .



Consistency vía Tchebychev inequality

Example: consistency of λ̂ = X as estimator of λ of a P(λ).

I We know E [λ̂] = λ and Var(λ̂) = λ/n.
I Then (Tchebycheff),

P(|λ̂− λ| < k
√
λ/n︸ ︷︷ ︸
ε

) ≥ 1− 1/k2︸ ︷︷ ︸
1−η

I Make your pick of 1− η as close to 1 as desired; whatever
the implied k , we only have to choose n large enough to
make ε as small as we wish.

Sometimes consistency can be checked directly

I Consider the case X ∼ U(0, θ) where we showed
θ̂MLE = X(n).

I Now, the probability that θ̂MLE is not within ε > 0 distance
of true θ is the probability that X(n) (and hence all sample
values) are below (θ − ε):

P(|θ̂MLE − θ| > ε) =

(
θ − ε
θ

)n

and the last term clearly goes to zero as n→∞.

I Therefore, it is clear that θ̂MLE
p→ θ.

Unbiasedness + variance→ 0 =⇒ consistency

I Again, simple application of Tchebychev’s inequality.
I Unbiasedness implies E(θ̂n) = θ.

P(|θ̂n − θ| < kσn︸︷︷︸
ε

≥ 1− 1/k2︸ ︷︷ ︸
1−η

I Let 1− η be as close to 1 as desired; whatever the implied
k , ε can be made small for large n, as σn → 0.

I If both variance and bias decrease to zero, we also have
consistency.

Consistency of moment estimators (I)

I Moment estimators are usually consistent.
I Sketch of argument for a particular case:

α1(θ) = m = X

I If m = α1(θ) has a continuous inverse function,
θ̂ = α−1

1 (X ).
I Now, convergence of X to m (law of large numbers) entails

convergence of θ̂ to θ:

plim(θ̂) = α−1
1 (plim(X )) = α−1

1 (m) = θ

I Notice: if α−1
q () were not continuous, X could be very close

of m and α−1
q (X ) not close to α−1

q (m) = θ.



Consistency of moment estimators (II)
An illustration of what happens:
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Consistency is not everything!

I Consistency is an asymptotic property. It tells us what
happen when the sample size goes to infinity.

I In practice, we may be limited to small samples, and then
the consistency property offers little comfort.

I Example: (artificial). In a P(λ),

λ̂n =

{
0 if n < 105.
X if n ≥ 105.

would be consistent (but pretty bad for sample sizes n
below 105!).

I Consistency is reassuring, but we need to check for
realistic sample sizes (often through simulation).

Efficiency (I)

I Ideally we would want an estimator that is always better
than any other: the very best.

I Such thing does not exist. Consider a Poisson(θ).
I X is the (moment, MLE) estimator of θ.
I The (rather stupid) estimator θ̂∗ = 2.3 is better when θ

happens to be 2.3!
I Want to exclude of consideration those estimators which

only work in certain circumstances.
I Requiring unbiasedness is one way of excluding of

consideration estimators such as θ̂∗.

Efficiency (II)

I If we restrict our attention to unbiased estimators, it makes
sense to chose the one with smallest variance.

I For θ̂1 and θ̂∗ both unbiased estimators of θ, we define
efficiency of θ̂1 relative to θ̂∗ as:

Var(θ̂∗)

Var(θ̂1)

I Assume Var(θ∗) were the lowest attainable. Then, any
estimator with efficiency 1 relative to θ̂∗ will be called
efficient.



Efficiency: a trivial example

I Let Xi ∼ N(m, σ = 1) for i = 1, . . . ,5.
I Then, m̂1 = X1+...+X5

5 has variance 1
5 .

I If we neglect some observations, as in m̂2 = X1+...+X3
3 the

variance is 1
3 .

I The efficiency of m̂2 relative to m̂1 is:

Var(m̂1)

Var(m̂2)
=

3
5

Efficiency: a less trivial example

I Consider again Xi ∼ N(m, σ = 1) for i = 1, . . . ,n = 2k + 1.
X is an unbiased estimator of the mean with variance 1

n
I It can be shown that m̂∗ = X(k+1) (= the median) has

variance 2πσ2/4n in the normal case.
I The efficiency of m̂∗ relative to X is:

Var(X )

Var(m̂∗)
=

2
π
≈ 0.6366

if we indeed are sampling a normal distribution.
I We might tolerate this loss of efficiency to protect

ourselves against a heavy tail distribution (like Cauchy).

The Cramer-Rao bound

I But, how do we know θ̂ cannot be improved upon?
I It turns out that we do have a universal yardstick, under

regularity conditions (more on that later)
I For any unbiased θ̂ based on n observations under

regularity conditions:

Var(θ̂) ≥ 1
nI(θ)

;

this is the celebrated Cramer-Rao lower bound.
I I(θ) is the so-called Fisher information contained in one

observation, and is defined as:

I(θ) = E
(
∂ log f (X ; θ)

∂θ

)2

Intuition for Fisher information

I Why is I(θ) a measure of information?
I Imagine a given (fixed) x ;(

∂ log f (x ; θ)

∂θ

)2

measures how fast log f (x ; θ) changes in response to
changes in θ.

I If log f (x ; θ) were very flat, close values of θ would have
similar likelihood, and we would be very uncertain about
the “true” θ.

I If log f (x ; θ) changes fast, it gives much information about
θ.

I If we average the derivative over possible values of X we
have Fisher information.



Efficient estimators and the Cramer-Rao bound

I Under regularity conditions, if

Var(θ̂) =
1

nI(θ)
;

the Cramer-Rao lower bound implies the unbiased θ̂
cannot be improved upon by any other unbiased estimator.
It is then called efficient.

I We know what the optimum is before we start.
I No fear that there is a better estimator that just didn’t occur

to us!

The Cramer-Rao bound: historical notes

I Harald Crameŕ (1892-1985), swedish statistician, author of
the extremely influential Mathematical Methods of
Statistics (1946), still a good reading.

I C.R.Rao (1920-), a distinguished indian statistician. Aside
from the Cramer-Rao bound, other contributions like the
celebrated Rao-Blackwell theorem (in the same vein than
the Cramer-Rao bound, but more powerful).

I The original publications date of 1945 (Rao) and 1946
(Cramer).

What are those regularity conditions?

I Basically,
1. The support of the distribution does not depend on the

parameter. Example of violation: U(0, θ).
2. The log likelihood function “sufficiently smooth”:

differentiable and order of integration and differentiation
interchangeable:

∂

∂θ
E(log f (X , θ)) = E

(
∂ log f (X , θ)

∂θ

)

I Failure of these conditions render unusable the
Cramer-Rao bound.

A trick to compute the Cramer-Rao bound.

I It turns out that

E
(
∂ log f (X , θ)

∂θ

)2

= −E
(
∂2 log f (X , θ)

∂θ2

)
I Either expression can be used to compute Fisher’s

information (the denominator of the Cramer-Rao bound).
I Usually best the second derivative, but sometimes looking

at the first we can easily compute its mean value.

http://en.wikipedia.org/wiki/C.R._Rao


The Cramer-Rao bound: examples (I)

We know X is unbiased for λ in a P(λ). Its variance is λ/n. Is
there anything better?

log f (X , λ) = −λ+ X log(λ)− log(X !)

∂ log f (X , λ)

∂λ
= −1 + X/λ =

(
X − λ
λ

)
E
(

X − λ
λ

)2

=
1
λ

The Cramer-Rao is

Var(λ̂) ≥ 1
n 1
λ

=
λ

n

so X is optimal in the unbiased class.

The Cramer-Rao bound: examples (II)

I We might have missed the fact that:

E
(

X − λ
λ

)2

=
1
λ

;

I In that case, taking the derivative of(
X − λ
λ

)
would have readily given us 1/λ.

The Cramer-Rao bound: examples (III)

I Consider estimation of p in a binary distribution.
I Moment and MLE is p̂ = X with variance p(1− p)/n.
I We have,

log f (X ,p) = X log(p) + (1− X ) log(1− p)

∂ log f (X ,p)

∂p
=

X
p
− 1− X

1− p

E
(

X
p
− 1− X

1− p

)2

= E
(

X − p
p(1− p)

)2

=
1

p(1− p)

I The CR bound is then,

Var(p̂) ≥ 1
n 1

p(1−p)

=
p(1− p)

n

and p̂ = X is efficient.

Some facts about the Cramer-Rao bound

I The CR bound may not be attainable.
I What it says is that we can do no better. . .
I . . .not that we can do as well.
I Hence, estimators with efficiency 1 as defined previously,

may not exist.
I In general, the MLE reaches the CR lower bound, at least

asymptotically.



The concept of sufficiency (I)

I To obtain estimators, we have made use of a statistic, a
function of the sample.

I Are we losing something?
I Or, could we do better looking individually at each sample

value, rather than to a summarizing function?
I Loose idea: when a statistic “squeezes all the juice” out of

a sample, it is sufficient.
I We have to formalize this “squeezing” property.

The concept of sufficiency (II)

I If given a statistic S = S(~X ) the conditional density (or
probability)

f (~X |S) =
f~X (~X ; θ)

fS(S; θ)

is independent of θ, S(~X ) is said to be sufficient for θ.
I Motivation: if once we know S = S(~X ) the density (or

probability) of the sample values does not depend on θ,
knowing those individual sample values cannot be of help
in determining θ.

I All information about θ is then contained in S = S(~X ).

The concept of sufficiency (III)

I Let X1, . . . ,Xn ∼ P(λ). Let S = X1 + · · ·+ Xn. We know
S ∼ P(nλ). Then

f (~X |S) =
f~X (~X ;λ)

fS(S;λ)

=

∏n
i=1 e−λλXi/X1!

e−nλ(nλ)S/S!

=
S!

X1!X2! . . .Xn!
n−S

I Therefore, S (or any other 1-1 function of S) is sufficient for
λ.

The concept of sufficiency (IV)

I As a further example, let’s consider the ordered sample
X(1), . . . ,X(n).

I If sampled values are i.i.d., values may arise in any order.
I Given X(1), . . . ,X(n), any order is equally likely, with

probability 1/n!, whichever the parameter(s) of the
distribution may be.

I Therefore, X(1), . . . ,X(n) is always a sufficient statistic,
although of little interest (it doesn’t “compact” information).



The factorization theorem (I)

I If we can decompose the joint density (or probability) as a
product,

f~X (~X ; θ) = g(S(~X ); θ)× h(~X )

where h(~X ) does not depend on θ, then S is sufficient.
I Quite easy to prove.
I Quite practical; we only have to see which function (or

functions) of the sample “carry with them” the parameter θ.

The factorization theorem (II)

I Take the Poisson case again. We have,

f~X (~X ;λ) =
n∏

i=1

e−λλXi/Xi !

= e−nλλX1+...+Xn︸ ︷︷ ︸
g(S,λ)

×
n∏

i=1

(1/Xi !)︸ ︷︷ ︸
h(~X)

I Clearly, S = X1 + . . .+ Xn is sufficient.

The factorization theorem (III)

I MLE have “built in” sufficiency.
I Using the factorization theorem, to maximize the left hand

side of
f~X (~X ; θ) = g(S(~X ); θ)× h(~X )

as a function of θ, we only need g(S(~X ); θ);
I The term h(~X ) is just a constant in the likelihood function.

Some ill-behaved distributions

I Most distributions in common us have sufficient statistics
for their parameters.

I This is not always the case. Consider the Cauchy
distribution (aka t1) with location θ:

fX (x : θ) =
1
π

1
1 + (x − θ)2

I If you use the factorization theorem to look for sufficient
statistics,

f~X (~X ; θ) = g(S(~X ); θ)× h(~X )

hard as you may try, you will at least need the ordered
sample (which is always a sufficient statistic).

I No further reduction is possible.



Logically equivalent statements (I)

I “If an animal is a whale, it lives in the water.”
I What can be inferred for animals which live in the water?
I And for animals which do not live in the water?
I Is a whale︸ ︷︷ ︸

p

=⇒ Lives in the water︸ ︷︷ ︸
q

I Does not live in water︸ ︷︷ ︸
�q

=⇒ Is not a whale︸ ︷︷ ︸
�p

Logically equivalent statements (II)

Quite generally,

I p =⇒ q and � q =⇒� p are logically equivalent.
(� above stands for negation:)

I Both are true or false.
I When testing hypothesis, we rely on a softened versions of

this equivalence.

Statements probabilistically related (I)

I Consider p =⇒ most of the time q.
I Then � q =⇒ � p is likely (or p is unlikely).
I Same structure, only now the implications are not required

to hold all times.
I � q is no longer proof of � p, but can be taken as evidence

in favour of it.

Statements probabilistically related (II)

Example:

I Coin is regular︸ ︷︷ ︸
p

=⇒ most of the time about 50% of heads︸ ︷︷ ︸
q

.

I Far from 50% of heads︸ ︷︷ ︸
�q

=⇒ Coin not regular︸ ︷︷ ︸
�p

is likely.

I Far from 50% of head︸ ︷︷ ︸
�q

is taken as evidence in favour of � p

(and therefore against p).



Hypothesis testing (I)

I A null hypothesis is an statement which we hold to be
true.

I If it is indeed true (p), a given experiment should very likely
produce a result in a certain range (q).

I If it so happens that the result is not observed in the very
likely range (� q), either:

1. Something very strange has happened (should not be the
case very often). . .

2. . . .or else the null hypothesis is not true to begin with.
I As statisticians, we go with the second option.

Hypothesis testing (II)

I Empiricism!
I If the experiment does not quite agree with the hypothesis,

we scrap the hypothesis.
I However, we cannot completely rule out the possibility that

something strange happened. We are bound to make
errors!

I But we try to keep those to a minimum.

Hypothesis testing (III)

I Notice: we start with an established piece of knowledge
(the null hypothesis).

I How we got there, there is no telling.
I Hypothesis testing does not tell us how to learn, but how

we put to test what we have somehow learned.
I Quite in keeping with ideas popular in mid XXth century

(e.g., Lakatos, Proofs and refutations.)
I Alternative approaches (like the one advocated by the

Bayesian school) give more clues on how to learn.

The anatomy of a hypothesis test (I)

I As already mentioned, a hypothesis is a conjecture.
I A statistical hypothesis is usually phrased in terms of the

values of one or more parameters.
1. The mean of a distribution is m = 0, (one parameter).
2. Two distributions have the same mean: m1 = m2, (two

parameters).
3. Two characters are independent: pij = pi. × p.j .

I Equivalently, a hypothesis is phrased by stating that a
parameter vector belongs to a subset Θ0 of the entire
feasible space Θ.

How would you phrase the hypothesis in items 1 and 2 above?

1) Θ0 = 0, Θ = R. 2) Θ0 = {(x , y) : x = y}, Θ = R2



The anatomy of a hypothesis test (II)

I In order to test the null hypothesis H0, we use as evidence
the information contained in a sample. We usually
condense that information using a test statistic, S = S(~X ).

I We better use a sufficient statistic!
I To be useful, that test statistic must have a known

distribution under H0. This is required, so that we can tell
when a sampled value is “rare” under H0.

I The decision procedure then is:
Reject H0 if the sampled value of S is “rare”, do

not reject otherwise.
I What is “rare”? Problem dependent.

The anatomy of a hypothesis test (III)

Example:
I We believe the mean of a N(m, σ2 = 1) distribution to be

zero (H0). A sample of n = 100 observations gives
X = 0.20.

I We are willing to reject the hypothesis if the evidence found
is among the 5% “rarest” events that could happen under
H0. What will be our decission?

I The events that we decide constitute evidence against H0
is called the critical region.

I The probability of the critical region when H0 is true, is
called the significance level.

The anatomy of a hypothesis test (IV)

At the stated level of significance (5%), we would reject H0.
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The anatomy of a hypothesis test (V)

With a different level of significance (1%), we would not reject
H0.

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4

 

D
en

si
ty



The trade-off between Type I and Type II errors

I The significance level α is the probability of unduly
rejecting H0.

I We should choose α considering how “grave” or “costly” is
such an error, called Type I error or size of the test.

I If we make α very small (an hence the critical region very
small also), we will almost never reject H0 . . .

I . . .even when we would like to, because it is false!
I Not rejecting H0 when it is false is called Type II error, and

its probability is denoted by β.

Trade-off between Type I and II errors - Ilustration
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Pure significance tests

I We are only considering so far H0.
I We are looking at empirical evidence to see it it

“contradicts” H0.
I When it does, we reject H0.
I Sometimes, we have a clear idea of what the “competing”

hypothesis is, and in this case we want to use that
information.

Testing against an alternative Ha

If we test H0 against an alternative Ha, a one-sided critical
region makes more sense.
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Optimal critical regions for H0 vs. Ha

The usual procedure is:
I Fix α, the probability of unduly rejecting H0.
I Among all critical regions of size α, find the one which

minimizes β (or, equivalently, maximizes 1− β, the power).
I When both H0 and Ha are simple (= fix completely the

distribution of the test statistic), a simple procedure exists,
base on Neyman-Pearson’s theorem.

I In other cases, a unique most powerful test may not exist.

The Neyman-Pearson theorem (I)

I After fixing the significance level α, what critical region
would give better power against a simple alternative?

I Let’s consider testing H0 : θ = θ0 vs. Ha : θ = θa:

x 0 1 2 3 4 5
P(x ; θ0) 0.60 0.26 0.05 0.04 0.04 0.01
P(x ; θa) 0.10 0.15 0.10 0.25 0.30 0.10

How would you choose a critical region of size α = 0.05 with maximum power?

Picking x = 4 and x = 5, for a total power of 0.40.

The Neyman-Pearson theorem (II)

I The intuition is that we want our critical region to be made
of points x with high ratio

f (x ; θa)

f (x ; θ0)

where f (x ; θ0) is the density under the null and f (x ; θa) is
the density under the alternative.

I Neyman-Pearson theorem: The most powerful test of
given size α for H0 : θ = θ0 against the alternative
Ha : θ = θa has critical region of the form:

Cα =

{
~x :

f (~x ; θa)

f (~x ; θ0)
> kα

}
for a constant kα which depends on α.

The Neyman-Pearson theorem - Proof (I)
I Consider the critical region

Cα =

{
~x :

f (~x ; θa)

f (~x ; θ0)
> kα

}
and any other α-size region Aα.

I Cα and Aα will in general overlap. Dropping the α
subscript: ∫

C
f (~x ; θ0)d~x =

∫
A

f (~x ; θ0)d~x = α

I Subtracting δ =
∫

C∩A f (~x ; θ0)d~x in both sides:∫
C∩Ac

f (~x ; θ0)d~x =

∫
A∩Cc

f (~x ; θ0)d~x = α− δ ≥ 0

How do we know α− δ ≥ 0?

Because C ∩ A ⊆ C.



The Neyman-Pearson theorem - Proof (II)

I The difference of powers of the two critical regions is:∫
C

f (~x ; θa)d~x −
∫

A
f (~x ; θa)d~x

I Inside C we have f (~x ; θa) > kf (~x ; θ0) and outside
f (~x ; θa) ≤ kf (~x ; θ0). The difference of powers is:∫

C
f (~x ; θa)d~x −

∫
A

f (~x ; θa)d~x

=

∫
C∩Ac

f (~x ; θa)d~x −
∫

A∩Cc
f (~x ; θa)d~x

≥ k
∫

C∩Ac
f (~x ; θ0)d~x − k

∫
A∩Cc

f (~x ; θ0)d~x

= k(α− δ)− k(α− δ) = 0

Neyman-Pearson example (I)
I In a large company, the number of workers not showing up

for work is Poisson-distributed. Workers claim that λ = 1,
while management claims λ = 2. They check four days
and obtain 1, 0, 2, and 2 workers not showing up for work.

1. Obtain the most powerful critical region to test the workers
hypothesis (H0) against the management’s at a 0.05
significance level.

2. What is the power of the test?
I We have:

f (~x ;λ = 1) =
4∏

i=1

e−11xi

xi !
=

e−4∏4
i=1 xi !

f (~x ;λ = 2) =
4∏

i=1

e−22xi

xi !
=

e−82
∑4

i=1 xi∏4
i=1 xi !

Neyman-Pearson example (II)

I From Neyman-Pearson, the most powerful critical region of
size α is of the form:

Cα =

{
~x :

f (~x ;λ = 2)

f (~x ;λ = 1)
> kα

}
=

{
~x :

e−82
∑4

i=1 xi

e−4

}
=

{
~x : e−42

∑4
i=1 xi > kα

}
I Taking logs and bringing all constants into k ′α:

Cα =

{
~x :

4∑
i=1

xi > k ′α

}

Neyman-Pearson example (III)
I We now know the form of Cα

Cα =

{
~x :

4∑
i=1

xi > k ′α

}

I Have no clue about what the value of k ′α is, but know∑4
i=1 xi ∼ P(λ = 4) when H0 is true.

I For Cα to have size α = 0.05, the constant must be a value
exceeded with probability no greater than α when sampling
a P(λ = 4) distribution. Resorting to tables (or R) gives us:

> ppois(0:8,lambda=4)
[1] 0.01832 0.09158 0.23810 0.43347 0.62884
[6] 0.78513 0.88933 0.94887 0.97864

I [8,∞) would be a critical region for S =
∑4

i=1 xi quite close
to α = 0.05; [9,∞) would have α = 0.02136.



Neyman-Pearson and sufficiency (I)

I Do we loose something by using Neyman-Pearson’s
theorem?

I We decide between H0 and Ha as if only the likelihood ratio
(LR) matters.

I Might be justified if the LR were a sufficient statistic.
I It is! In a sense, it is the “smallest” sufficient statistic.
I We prove a simplified version next.

Neyman-Pearson and sufficiency (II)

I Consider the simple case where Θ = {θ0, θ1} and both
distributions FX (x ; θ) have commen support.

I The, the likelihood ratio

R(~x) =
f~X (~x ; θ0)

f~X (~x ; θ1)

is a sufficient statistic.
I To prove sufficiency we have to show that

f~X (~x |R(~x) = r ; θ0) = f~X (~x |R(~x) = r ; θ1)

Neyman-Pearson and sufficiency (III)

f~X (~x |R(~x) = r ; θ0) =
f~X (~x ; θ0)∫

R(~X)=r
f~X (~x ; θ0)d~x

=
rf~X (~x ; θ1)∫

R(~X)=r
rf~X (~x ; θ1)d~x

=
f~X (~x ; θ1)∫

R(~X)=r
f~X (~x ; θ1)d~x

= f~X (~x |R(~x) = r ; θ1)

Some quirks of hypothesis testing (I)

I Very non symmetric role of null and alternative hypothesis.
I Management could have replied the worker’s

representative: “Why don’t we test as null our hypothesis
and not yours?

I If evidence is not strong, the null is the surviving
hypothesis, whichever it happens to be!

I The null should be provisionally established knowledge, put
to test. How we arrive to that knowledge, there is no telling.

I Alternative approaches (like bayesian inference) treat
conjectures in a more symmetric way.



Some quirks of hypothesis testing (II)
I That H0 is rejected does not mean that Ha should be

accepted.
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I An observation at X is evidence against H0 but much more
so against Ha. In such situation, we should revise our
hypothesis and admit that other possibilities might exist.

Some quirks of hypothesis testing (III)

I In (classical, frequentist) statistics we start the world anew
each morning!

I Doesn’t make much sense at times: we have previous
information.

I Sometimes, we are so convinced of H0 that even a very
rare result under H0 will not persuade us to abandon it.

I Under the frequentist approach, no way to deal with this.

Some quirks of hypothesis testing (III) Some quirks of hypothesis testing (IV)

https://xkcd.com/1132/

https://xkcd.com/1132/


Goodness-of fit problems

I Quite common hypothesis.
1. Do winning numbers in the Lotería Primitiva appear to

come from a discreet uniform distribution over {1,2,. . . ,49} ?
(no parameters estimated, fully especified distribution)

2. Does the number of dead people by horse (or mule) kick in
the Prusian army follow a Poisson distribution (plausible;
small probability, many people at risk). (one parameter to
be estimated)

3. Do intervals between accidents at work appear to follow an
exponential distribution? (one parameter to be estimated)

I In all these cases, we have data and we want to test
adequacy of a given distribution, possibly not fully
especified (= some parameter has to be estimated).

Test statistic

I Break down the range of the random variable in k classes.
Call Oi the number of observations in class i ,
i = 1,2, . . . , k .

I Call Ei the number of expected observations in class i
under the null hypothesis (i.e., if the assumed distribution
for the data is “true”).

I Then,

Z =
k∑

i=1

(Oi − Ei)
2

Ei

Ho∼ χ2
k−p−1

I k is the number of classes, p the number of parameter
estimated, if any.

The gory details

I Where does this come from? Proof not trivial, distribution
valid only as an approximation for “large” samples.

I How large is “large”? No class should have an expected
value less than, say, 5. If it does, merge classes.

I How to choose k? Reasonably large, but keeping classes
“well peopled”.

I Howto choose the class boundaries? Good question.
I Usually no particular alternative: a pure significance test.
I Critical region: right tail.

Example - I

> primitiva[1:3,1:8]
Fecha Semana N1 N2 N3 N4 N5 N6

1 01/01/2009 1 4 8 12 25 34 46
2 03/01/2009 1 9 11 21 30 31 44
3 08/01/2009 2 7 17 27 28 29 44
> nums <- as.matrix(primitiva[,3:8])
> freq <- table(nums)
> sum(freq) # How many numbers seen?
[1] 1314
> e <- sum(freq) / 49 # Expected each under H0
> e
[1] 26.82



Example -II

The absolute frequencies of each number are:

> plot(freq)
> abline(h=e,col="red")
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Example -III

I Question is now to decide whether the departures from the
expected number of appearances is enough to reject H0
(=”all numbers equally likely”).

I We can use a χ2-test where each “class” I is made of one
number, Oi are the observed occurrences and
Ei = 26.81633.
> Z <- sum( (freq-e)^2 / e )
> Z
[1] 33.69
> 1 - pchisq(Z,df=49-1)
[1] 0.9416

I The probability in the tail is quite large; H0 gives a very
good fit and is not rejected.

Example - IV

I R has a standard function which does the same at once.
> result <- chisq.test(x=freq,p=rep(1/49,49))
> result

Chi-squared test for given probabilities

data: freq
X-squared = 34, df = 48, p-value = 0.9

I So, in conclusion, no evidence of “lucky” numbers.

Example - V

I If you have to do it manually, your best bet is to arrange
computations in a small table.

I For instance, you might have in the case shown:

Oi Ei (Oi − Ei) (Oi − Ei)
2 (Oi − Ei)

2/Ei

27 26.81633 0.183673 0.03373 0.001258
34 26.81633 7.183673 51.60516 1.924394

...
...

...
...

...
25 26.81633 -1.816327 3.29904 0.123023

Z = 33.6865



Chi square test with estimated parameters (I)

I Data: deaths by horse kick in 200 army corps years.

DEATHS OBSERVED CASES

0 109
1 65
2 22
3 3
4 1

I Is the Poisson distribution a good model for these data?
I The hypothesis does not uniquely fix the distribution.
I The MLE of λ is:

λ̂ =
0× 109 + 1× 65 + 2× 22 + 3× 3 + 4× 1

200
= 0.61

Chi square test with estimated parameters (II)

I We have estimated one parameter (λ).
I We do as before, only the Ei are compute from the
P(λ = 0.61) distribution.

I For instance, since

P(x = 0;λ = 0.61) =
e−0.61(0.61)0

0!
= 0.5433509

we would compute E1 (the expected number of cases with
0 deaths) as: 200× 0.5433509 = 108.67.

I Likewise for the remaining Ei cells.

Chi square test with estimated parameters (III)

I Now we have:

Oi Ei (Oi − Ei) (Oi − Ei)
2 (Oi−Ei )

2

Ei

109 108.67017 0.32983 0.10879 0.00100
65 66.28881 -1.28881 1.66102 0.02505
22 20.21809 1.78191 3.17522 0.15704

3 4.11101 -1.11101 1.23434 0.30025
1 0.62693 0.37307 0.13918 0.22200

Z = 0.70537

Chi square test with estimated parameters (IV)

I We now compare Z with a chi-square with 3 degrees of
freedom (k − p − 1 = 5− 1− 1 = 3):
> 1 - pchisq(0.70537,df=3)
[1] 0.8719

I The tail is 0.87194; there is no reason to reject the Poisson
distribution hypothesis.

I One might question the use of the test in that some
classes are very sparsely populated.



Contingency table analysis

I A two-dimensional contingency table is an array which
classifies observations according to two variables, one
occurring in rows, the other in columns.

I Definition can be generalized to different number of
dimensions

I For example, we may have:

Gender Right-handed Left-handed Total

Male 43 9 52
Female 44 4 48

Total 87 13 100

I The row and column totals are referred as the margins.

Sampling schemes (I)

I We may fix only the total number of cases we
cross-tabulate. . .

I . . .or we may fix the row margin or the column margin.
I In the first case we speak of multinomial sampling, in the

second of product multinomial sampling.
I Why should we care? Marginal probabilities can only be

estimated from “free” margins.

Sampling schemes (II)

I Consider the following case: we pick a sample of 1000
persons and cross-classify them according to ethnic origin
and whether they suffered in the last winter from common
cold. Want to test relative vulnerability.

Race Had cold Didn’t have cold Total

Whites 801 104 905
Non-whites 83 12 95

Total 884 116 1000

I We may estimate the proportion of whites as 905/1000 =
0.905 and the overall prevalence of cold as 0.884

Sampling schemes (III)

I Suppose though we are sampling a population with a tiny
proportion of non-whites. We might end up with a table
such as:

Race Had cold Didn’t have cold Total

Whites 891 108 999
Non-whites 1 0 1

Total 892 108 1000

I We end up with a table in which non-whites are almost (or
totally) absent.

I Non-white sample far too small to investigate the matter of
interest.



Sampling schemes (IV)

I What we need instead is to sample both races separately,
say 500 each:

Race Had cold Didn’t have cold Total

Whites 398 102 500
Non-whites 403 97 500

Total 801 199 1000

I Then we are assured to have enough observations in each
group.

I Marginal totals do not estimate anything now: the row
totals are fixed by design.

Sampling schemes (V)

I If we fix only the total, we are sampling one population.
The hypothesis of interest is independence in that
population.

I If we fix the row totals, we are in effect sampling two
populations. The hypothesis of interest is homogeneity of
both populations with respect to the character coded in
columns.

I Both hypothesis are tested conditional on the margins, and
the results are exactly the same for a given table, no matter
how it was sampled.

I Why conditionally on the margins? It is the distribution of
counts inside the table what is indicative of independence
(or homogeneity), not how many people of each race we
look at.

Testing independence (I)

I Consider,

Race Had cold Didn’t have cold Total

Whites 801 104 905
Non-whites 83 12 95

Total 884 116 1000

and assume it was obtained fixing only N = 1000.
I The hypothesis of interest is H0 : pij = pi. × p.j
I p̂11 = 0.884× 0.905, and E11 = 1000× 0.884× 0.905.

Similarly for the rest.

Testing independence (II)

Race Had cold Didn’t have cold Total

Whites 801 104 905
Non-whites 83 12 95

Total 884 116 1000

I Apparently, we estimate 4 parameters pij for the 4 cells.
I Conditionally on the margins, only two parameters are free,

and need to be counted.



Testing independence (III)

Oij Eij (Oij − Eij) (Oij − Eij)
2 (Oij−Eij )

2

Eij

801 800.02 0.98 0.9604 0.00120
83 83.98 -0.98 0.9604 0.01144

104 104.98 -0.98 0.9604 0.00915
12 11.02 0.98 0.9604 0.08715

Z = 0.10894

I The expected values are computed as Eij = Npij = Npi.p.j .
I For instance, 800.02 = 1000× 0.884× 0.905.
I Degrees of freedom are k − p − 1 = 4− 2− 1 = 1. So we

have to compare 0.10894 with the quantiles of a χ2
1

distribution.

Testing independence (IV)

I We can easily construct the table:
> ColdRace <- matrix(c(801,83,104,12),2,2)
> ColdRace <- as.table(ColdRace)
> colnames(ColdRace) <- c("Cold","Not-Cold")
> rownames(ColdRace) <- c("Whites","Non-whites")
> ColdRace

Cold Not-Cold
Whites 801 104
Non-whites 83 12

Testing independence (V)

Function loglin fits, among many other things, the
independence model:

> result <- loglin(ColdRace,margin=list(1,2),fit=TRUE)
2 iterations: deviation 0
> result$pearson
[1] 0.1089
> result$df
[1] 1

Testing independence (VI)

I The Eij approach quite well Oij :
> result$fit

Cold Not-Cold
Whites 800.02 104.98
Non-whites 83.98 11.02

I We can now test the independence hypothesis:
> 1 - pchisq(result$pearson,df=result$df)
[1] 0.7414

I The tail is 0.7414; there is no reason to reject the
independence hypothesis.



Testing homogeneity (I)

I Consider again,

Observed counts (= Oi )

Race Had cold Didn’t have cold Total

Whites 801 104 905
Non-whites 83 12 95

Total 884 116 1000

but this time assuming we have fixed the row marginal.
I We are testing the hypothesis H0 : p1j = p2j for all j .
I Under H0, p̂.j = n.j/n.. is a sensible estimate of p.j ,

common to all i .

Testing homogeneity (II)

I The results are exactly the same, only they are arrived at in
a different manner.

Expected counts (= Ei )

Race Had cold Didn’t have cold Total

Whites 800.02 104.98 905
Non-whites 83.98 11.02 95

Total 884 116 1000

I The E1j in the first row are computed as 905× p̂.j
I The E2j in the second row are computed as 95× p̂.j

Testing homogeneity (III)
I

Z1 =
2∑

j=1

(O1j − E1j)
2

E1j

for the cells in the first row would be distributed as
χ2

k−1 = χ2
1 if no parameters were estimated and the p.j

used were the correct p1j .
I Likewise,

Z2 =
2∑

j=1

(O2j − E2j)
2

E2j

woud be χ2
1.

I Z = Z1 + Z2 would be distributed as a χ2
2, but we have to

subtract 1 parameter p.1 estimated (why not also p.2?).
I The same statistic Z follows the same distribution under

H0 than in the case of independence.

General rule

I When testing either independence or homogeneity in an
r × s contingency table, in both cases we form

Z =
2∑
i,j

(Oij − Eij)
2

Eij
.

I The resulting value of Z is (under the null hypothesis of
independence or homogeneity) distributed as:

χ2
(r−1)(s−1)

I H0 should be rejected if Z falls in the α right tail of said
distribution (alternatively: if the probability to the right of Z
in a χ2

(r−1)(s−1) is “small”).



Fisher’s exact test (I)

I Consider again our table,

Race Had cold Didn’t have cold Total

Whites n11 n12 n1.
Non-whites n21 n22 n2.

Total n.1 n.2 N = n..

I For given p11,p21,p12,p22 its probability would be:

N!

n11!n12!n21!n22!
pn11

11 pn21
21 pn12

12 pn22
22

Fisher’s exact test (II)

I The probabilities that N is distributed as it is in the row and
column margins are respectively:

N!

n1.!n2.!
pn1.

1. pn2.
2.

N!

n.1!n.1!
pn.1
.1 pn.2

.2

I Conditional on the margins, the probability of a given table
is: (

N!

n11!n12!n21!n22!
pn11

11 pn21
21 pn12

12 pn22
22

)
(

N!

n1.!n2.!
pn1.

1. pn2.
2.

)(
N!

n.1!n.2!
pn.1
.1 pn.2

.2

)
I Under the null hypothesis pij = pi.p.j all nuisance

parameters cancel!

Fisher’s exact test (III)

I All we are left with for the probability of a given table is:(
N!

n11!n12!n21!n22!

)
(

N!

n1.!n2.!

)(
N!

n.1!n.2!

)
I The denominator is always the same.
I Can compute the probability of each table under the null

H0 : pij = pi.p.j and check whether what we have observed
is very unlikely.

I Unfeasible for large tables.

Fisher’s exact test (IV)

I Function to do it in R. Useful for small tables; no
approximations. Will fail for large tables.
> fisher.test(ColdRace)

Fisher's Exact Test for Count Data

data: ColdRace
p-value = 0.7
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.5346 2.1400
sample estimates:
odds ratio

1.113



Fisher’s exact test (V)

Table: Accidents 1970-2009 of european airlines involving loss of life

Airline Flights Accs Airline Flights Accs

Aer Lingus 1200000 0 Icelandair 390000 0
Air France 5900000 8 Lufthansa 7300000 4
Alitalia 3900000 3 KLM 2400000 3
Austrian Airlines 750000 0 Olympic Airways 1800000 3
Braathens 1350000 1 Sabena 1600000 0
British Airways 8270000 3 SAS 5400000 2
British Midland 1030000 1 Swiss/Swissair 3200000 5
easyJet 760000 0 TAP Air Portugal 850000 3
Finnair 1700000 0 Turkish Airlines 2100000 10
Iberia 4500000 4 Virgin Atlantic 150000 0

Fisher’s exact test (VI)

I When counts are very small, the chi square approximation
may be bad, and Fisher’s test is required.
> chisq.test(accidentes)

Pearson's Chi-squared test

data: accidentes
X-squared = 56, df = 19, p-value = 2e-05

I Apparently evidence of differences between airlines, but χ2

approximation possibly flawed.

Fisher’s exact test (VII)

I It is not feasible to compute ALL tables, simulation is
performed instead.
> fisher.test(accidentes,

simulate.p.value=TRUE,
B=10000)

Fisher's Exact Test for Count Data with
simulated p-value (based on 10000 replicates)

data: accidentes
p-value = 0.002
alternative hypothesis: two.sided

I Clear evidence of “worse” airlines (even with data omitted
for some airlines which would make the conclusions
stronger)
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Earlier notions were defined differently Introduction

I Normal distribution is a useful model in many situations.
I Why? Central Limit Theorem.
I Even when the the distribution of a random variable is not

normal, normal theory based tests are surprisingly
adequate.

I By “adequate” is meant that significance levels (α) and
power (1− β) are close to theoretical values.

I Several of these tests first introduced by Fisher, put on a
firmer ground by the Neyman-Pearson lemma.

H0 : m = m0 with X ∼ N(m, σ2) and σ2 known (I)

I We have X ∼ N(m0, σ
2/n) and therefore:

T =
X −m0

σ/
√

n
∼ N(0,1)

I T can be computed because σ2 is known.
I Hence,

Prob
{
−zα/2 ≤ T ≤ zα/2

}
= 1− α

I We would reject H0 at the significance level α if
|T | > |zα/2|.

H0 : m = m0 with X ∼ N(m, σ2) and σ2 known (II)

I If we expect departures from H0 to be of the form m > m0
or m < m0 we would adjust the critical region accordingly:

m > m0 =⇒ Reject if T > zα
m < m0 =⇒ Reject if T < −zα

I Makes sense when looking at the test statistic

T =
X −m0

σ/
√

n
; would also be the answer given by the

Neyman and Pearson theorem for a simple alternative.
I “Reject if |T | > |zα/2|” is just a compromise when no clear

alternative.



A digression: confidence intervals

I When testing H0 with no given alternative, the “unlikely”
region is the critical region.

I The “likely” region is the confidence interval.
I This does not extend to tests with a prescribed alternative

Ha.
I When we have a Ha, the critical region may be one-sided,

not the complement of the confidence interval.

H0 : m = m0 with X ∼ N(m, σ2) and σ2 known (III)

I What is the payoff of a larger sample size n?
I The test statistic always is N(0,1) distributed under the null

H0.
I However, under an alternative m 6= m0,

T =

√
n(X −m0)

σ

has mean
√

n(m −m0)/σ.
I For given m, the greater n, the farther away from 0 is the

mean of the test statistic.

H0 : m = m0 with X ∼ N(m, σ2) and σ2 known (IV)
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H0 : m = m0 with X ∼ N(m, σ2) and σ2 unknown (I)

I Now, T =
X −m0

σ/
√

n
cannot be computed, for σ2 is not

known.
I Replacing σ2 by its estimate s2 = n−1∑n

i=1(xi − x)2 gives
an estimator whose distribution under H0 is no longer
N(0,1).

I Key fact:
nS2

σ2 ∼ χ
2
n−1

and is independent of X .
I This paves the way to eliminating the nuisance parameter
σ2 by studentization.



H0 : m = m0 with X ∼ N(m, σ2) and σ2 unknown (II)

I The ratio,

T =

√
n(X−m0)

σ√
nS2/σ2

n−1

=
(X −m0)

S

√
n − 1 ∼ N(0,1)√

χ2
n−1

n−1

when H0 : m = m0 is true.
I Therefore we can compare the values of the test statistic T

to a tn−1 (Student’s t with n − 1 degrees of freedom).
I Decision rule: "Reject H0 if |T | > tα/2;n−1."
I Again, we take critical regions of full α size to the right or to

the left, if alternative is one-sided.

Example: H0 : m0 = 2, σ2 = 1 known

I Let the sample be:
> x <- c(2.2,3.4,2.9,3,1.6,3,3.1,3.6,1.9)
> length(x) # sample size
[1] 9
> T <- sqrt(9) * ( mean(x) - 2 ) / 1
> T
[1] 2.233
> qnorm(0.975) # leaves tails of alfa = 0.05
[1] 1.96

I In this case, we would reject.

Example: H0 : m0 = 2, σ2 = 1 unknown

I Now, we would compute
> T <- sqrt(9-1) * ( mean(x) - 2 ) / sqrt( 8 * var(x) / 9 )
> T
[1] 3.257
> qt(0.975,df=8) # so reject
[1] 2.306
> var(x)
[1] 0.4703
> sum( (x-mean(x))^2 ) / 9
[1] 0.418
> ( 8 * var(x) / 9 ) # var command uses (n-1) below
[1] 0.418

H0 : σ2 = σ2
0 with X ∼ N(m, σ2)

I Under the null hypothesis,

T =
nS2

σ2
0
∼ χ2

n−1

I Therefore,

Prob

{
χ2

n−1;1−α/2 ≤
nS2

σ2
0
≤ χ2

n−1;α/2

}
= 1− α

I Critical region [0, χ2
n−1;1−α/2] ∪ [χ2

n−1;α/2,∞), unless we
have an alternative Ha : σ2 < σ2

0 or Ha : σ2 > σ2
0

I In the first case the critical region would be [0, χ2
n−1;1−α], in

the second [χ2
n−1;α,∞)



H0 : m1 −m2 = m∗1 −m∗2 with X , Y normal, variances
known (I)

I The commonest test by far is that of H0 : m1 −m2 = 0, but
we present the test generally.

I We have,

X − Y ∼ N

(
m1 −m2,

σ2
1

n1
+
σ2

2
n2

)

I Hence, under H0,

X − Y − (m∗1 −m∗2)√
σ2

1
n1

+
σ2

2
n

∼ N(0,1)

H0 : m1 −m2 = m∗1 −m∗2 with X , Y normal, variances
known (II)

I Therefore, under H0,

Prob

−zα/2 ≤
X − Y − (m∗1 −m∗2)√

σ2
1

n1
+

σ2
2

n2

≤ zα/2

 = 1− α

I The critical region for the test statistic is made of the two
α/2 tails, unless we have reason to expect the deviance to
be one-sided.

H0 : m1 −m2 = m∗1 −m∗2 with X , Y normal, variances
σ2

1 = σ2
2 unknown (I)

I We have,

X − Y ∼ N

(
m1 −m2,

σ2
1

n1
+
σ2

2
n2

)
n1S2

1

σ2
1

+
n2S2

2

σ2
2

∼ χ2
n1+n2−2

I Using the crucial assumption that σ2
1 = σ2

2 = σ2 we can
construct a test statistic which does not depend on σ2 .

H0 : m1 −m2 = m∗1 −m∗2 with X , Y normal, variances
σ2

1 = σ2
2 unknown (II)

I Using σ2
1 = σ2

2 = σ2

X−Y−(m1−m2)

σ
√

1
n1

+ 1
n2

1
σ

√
n1S2

1+n2S2
2

n1+n2−2

∼ tn1+n2−2

I Cancelling the nuisance parameter σ we end up with:

X − Y − (m1 −m2)√
1
n1

+ 1
n2

√
n1S2

1+n2S2
2

n1+n2−2

∼ tn1+n2−2

I Assumption σ2
1 = σ2

2 crucial, otherwise an open question
(so-called Behrens-Fisher problem).



H0 : σ2
1/σ

2
2 = σ2

1∗/σ
2
2∗ with X , Y normal (I)

I With respective sample sizes n1 and n2, we have:

n1S2
1

σ2
1
∼ χ2

n1−1
n2S2

2

σ2
2
∼ χ2

n2−1

I Clearly both statistics are independent, so

n1S2
1σ

2
2(n2 − 1)

n2S2
2σ

2
1(n1 − 1)

∼ Fn1−1,n2−1

I It the hypothesis H0 is true, replacing σ2
1, σ2

2 by their
hypothetical values would give a test statistic with the
distribution shown.

General ideas

I Tests for a mean or the difference of means are remarkably
robust to deviations from normality; however, to play safe
we might use tests to be described next.

I Tests for the difference of means are quite sensitive to
different variances: the requirement σ2

1 = σ2
2 cannot be

dispensed with.

Permutation tests (I)

I Easy alternative when distribution cannot be assumed and
we can use a computer.

I Want to test x1, . . . , xn1 and y1, . . . , yn2 are indeed samples
form the same population, the alternative being that the
means are different.

I Our test statistic is x − y . Need something to compare to.
I If we arrange the observations as:

x1, . . . , xn1 , y1, . . . , yn2

x − y is just the difference of the averages of the first n1
and subsequent n2 observations.

Permutation tests (II)

I If observations come indeed from the same population, the
difference between the n1 and n2 observations in each
group should be of similar magnitude than that among any
other set of n1 and n2 observations.

I Idea: sample repeatedly the whole set of observations in
random subsets of n1 and n2, and compute each time
(x − y)j (j = 1, . . . ,N).

I Compare the observed x − y to (x − y)j (j = 1, . . . ,N) and
reject H0 if it is in an extreme position.

I Sampling is usually done by permuting the original sample,
hence the name.



Testing H0 : m = m0 with no normality (I)

I For “large” n (=sample size), use normal theory tests.
“Large” is n ≥ 30 (if σ2 is known) and n ≥ 100 (if it is not).

I For smaller n, remember Tchebycheff inequality:

Prob {|X −m| < kσ} ≥ 1− 1
k2

I For the particular case of X we have:

Prob
{
|X −m| < kσ√

n

}
≥ 1− 1

k2

Testing H0 : m = m0 with no normality (II)

I Therefore, replacing k by 1/
√
α we have:

Prob
{
|X −m| < σ√

nα

}
≥ 1− α

I This gives as a basis for a confidence interval for m and a
test: “Reject H0 at the α significance level if
|X −m0| > σ/

√
nα.”

I If σ2 is unknown, replace it by its estimate s2 to have an
approximate test.

I This distribution-free method gives tests less powerful (and
confidence intervals wider) than the normal theory tests.

The case of a proportion (I)
I One case of particular interest is that of a proportion.

Variable X the value 0 or 1 (“yes” or “no”, or similar
dichotomous values coded to 1/0).

I We are interested in the probability of 1, p.
I Clearly X = n−1(X1 + . . .+ Xn) is an unbiased estimate of

p.
I How to test hypothesis on p or estimate it by interval? We

know that for large n approximately,

X − p
s/
√

n
≈ N(0,1)

I We can estimate s2 by p̂(1− p̂) or (conservatively) by 0.25.
I However we estimate p, approximately, for large n,

X −m
s/
√

n
≈ N(0,1)

How would we construct a confidence interval for p

(X ± zα/2s/
√

n)

The case of a proportion (II)

Example:
I In a sample of 500 parts from a very large batch, 33 are

found to be defective. Would the hypothesis H0 : p = 0.04
be rejected against an alternative Ha : p > 0.04?
(α = 0.05).

I The estimate of p would be 33/500 = 0.066 and
s2 = pq = 0.04× 0.96 = 0.0384. Under H0,

(X − 0.04)√
0.0384/

√
500

≈ N(0,1);

the critical region would be to the right.
I Replacing X by 33/500 we get a value for the test statistic

of 2.97, well inside a critical region of size α = 0.01. So we
would reject H0 at said level of significance.



The case of a proportion (III)

Example (continued):
I If we were asked to estimate by interval the true p with

confidence 1− α = 0.99, we could use:

(X − p)√
0.0667× 0.9333

500

≈ N(0,1)

I Then,

Prob

{
X − 2.5758

√
0.06222

500
≤ p ≤ X + 2.5758

√
0.06222

500

}
≈ 0.99

I The confidence interval would thus be (0.0666± 0.0287)

I Replacing s2 by the upper bound of p(1− p) = 0.25 would
be very conservative here.

Testing differences of means

I We state without proof the following approximate results:

X − Y − (m1 −m2)√
σ2

1
n1

+
σ2

2
n2

≈ N(0,1) (n1 ≥ 30,n2 ≥ 30)

X − Y − (m1 −m2)√
s2

1
n1

+
s2

2
n2

≈ N(0,1) (n1 ≥ 100,n2 ≥ 100)

I Those approximate distributions can be used in the
construction of test statistics or confidence intervals.

Testing differences of proportions

I The results in the previous slide can be specialized to the
case of two proportions. In that case,

X =
Z1

n1
m1 = p1

Y =
Z2

n2
m2 = p2

Z1
n1
− Z2

n2
− (p1 − p2)√

p1q1
n1

+ p2q2
n2

≈ N(0,1)

I Again, sample sizes should be large.
How would we construct a confidence interval for (p1 − p2)?(

Z1
n1
− Z2

n2

)
± zα/2

√
p1q1
n1

+ p2q2
n2

The OC (“operating characteristic”) curve (I)

I The performance of a test of H0 against a set of
alternatives usually described by the OC curve: it gives the
probability of non-rejection of H0 for both the null and a
range of alternatives.

I Common in specification of industrial quality sampling
protocols.

I The conflicting interests of buyer and seller are specified in
two points, through which the the curve is forced to pass.



The OC (“operating characteristic”) curve (II)
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Paired comparisons (I)

I When performing the classical t-test we assume
independent observations.

I Sometimes, this is clearly not the case. A different test
would be indicated: one possibility is the paired
comparisons test.

Paired comparisons (II)

I Consider the following data on weight at birth of male

babies:

Mother First Second
A 3.800 4.150
B 2.400 2.755
C 2.750 2.900
D 1.800 1.990

Average 2.687 2.949

I It doesn’t make much sense to assume independence
between babies in the first and secon column.

I We may notice that second babies are always heavier; this
has probability 1/16 of happening under the null
hypothesis of equal weights.

Paired comparisons (III)

I If weights had the same mean for babies of the same
mother, difference of weight should have mean zero.

Mother First Second First−Second
A 3.800 4.150 −0.350
B 2.400 2.755 −0.355
C 2.750 2.900 −0.150
D 1.800 1.990 −0.190

Average 2.687 2.949 −0.261

I This suggests one way of testing which accounts for
dependence.



Paired comparisons (IV)

> First <- c(3.80, 2.40, 2.75, 1.80)
> Second <- c(4.150, 2.755, 2.900, 1.990)
> t.test(x=First,y=Second)

Welch Two Sample t-test

data: First and Second
t = -0.43, df = 6, p-value = 0.7
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.764 1.241
sample estimates:
mean of x mean of y

2.688 2.949

Paired comparisons (V)

> t.test(x=First,y=Second, paired=TRUE)
Paired t-test

data: First and Second
t = -4.9, df = 3, p-value = 0.02
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-0.43094 -0.09156
sample estimates:
mean difference

-0.2613

Sampling of independent observations

I We have been assuming samples

X1,X2, . . . ,Xn

made of independent observations.
I This makes sense:

I When we sample an infinite population: seeing one value
does not affect the probability of seeing the same or
another value.

I When we sample with replacement.
I With finite populations without replacement, what we see

affects the probability of what is yet to be seen.

Finite versus infinite populations (I)

I With infinite populations, precision depends only on
sample size.

I Usually, standard error of estimation is
√

σ2

n where n is
sample size and σ2 the population variance.

I If estimator is consistent we approach (but never quite hit
with certainty) the true value of the parameter.



Finite versus infinite populations (II)

I If population is finite of size N, we could inspect all units
and estimate anything with certainty:

m̂ =
X1 + X2 + . . .+ Xn

n

would verify m = m̂ if n = N.
I All parameters can, in principle, be known with certainty!
I With n 6= N,

I If n/N ≈ 0, independent sampling good approximation.
I If n/N � 0, we have to take into account that we are

looking at a substantial portion of the population.

An overview of things to come

We will see:
I What makes sampling without replacement more complex.
I What relationship there is among independent and

non-independent sampling.
I What other types of sampling exist.

The central approximation

I Requirement: replacement or “large” population size N.
I If n is “large” and X1, . . . ,Xn “near” independent,

X =
X1 + . . .+ Xn

n
∼ N(m, σ2/n)

I Then,

Prob

(
X − zα/2

√
σ2

n
≤ m ≤ X + zα/2

√
σ2

n

)
= 1− α

Estimation of the population total

I Since T = Nm, we just have multiply by N the extremes of
the interval for m.

I Hence,

Prob

(
NX − Nzα/2

√
σ2

n
≤ T ≤ NX + Nzα/2

√
σ2

n

)
= 1− α



Estimation of a proportion

I If Xi is a binary variable, X is the sample proportion.
I We have X ∼ N(p,pq/n)

I Usual estimate of variance is p̂(1− p̂)/n.
I Sometimes we use a (conservative) estimate: pq ≤ 0.25,

hence a bound for σ2 is 0.25/n.

Sampling error with confidence 1− α.

I From

Prob

(
X − zα/2

√
σ2

n
≤ m ≤ X + zα/2

√
σ2

n

)
= 1− α

we see that we will be off the true value m by less than

zα/2

√
σ2

n with probability 1− α.
I This is called the “1− α (sampling) error”.
I “Sampling error” also used to mean standard deviation of

the estimate.

Finding the required sample size n

I Example: What n do we need so that with confidence 0.95
the error in the estimation of a proportion is less than 0.03?

I Solution: Error is less than zα/2

√
σ2

n with confidence
1− α.

I Confidence 0.95 means zα/2 = 1.96

I Want 0.03 > 1.96
√

σ2

n . Worst case scenario is σ2 = 0.25.

I Therefore, n > (1.96)2×0.25
0.032 = 1067.11 will do. Will take

n = 1068.

Interesting facts (I)

I Under independent sampling required sample size
depends only on variance and precision required.

I Questions like: “Is a sample of 4% enough?” are badly
posed.

I n = 400 (4% of a population with N = 10000) insufficient to
give a precision of 0.03 with confidence 0.95.

I . . . but n = 3000 (0.3% of a population with N = 1000000)
vastly enough!



Interesting facts (II)

I As long as populations are large detail is expensive!
I To estimate a proportion in the CAPV with the precision

stated requires about n = 1068.
I To estimate the same proportion for each of the three

Territories with the same precision, requires three times as
large a sample!

I Subpopulation estimates have much lower precision than
those for the whole population.

Estimation of the mean (I)

I In independent sampling,

E [x ] = E
[

X1 + . . .+ Xn

n

]
=

m + m + . . .+ m
n

=
nm
n

= m

I E [Xi ] = m irrespective of what other values are in the
sample.

I Without replacement, distribution of Xi depends on what
other values are already present in the sample.

I The same result as for independent sampling is true!

Estimation of the mean (II)

I Theorem 1 In a finite population of size N with
m =

∑N
i=1 yi/N, for samples Y1, . . . ,Yn without

replacement of size n < N we have:

E [Y ] = m

I Proof
I Y1,Y2, . . . ,Yn are the elements of the sample.
I y1, y2, . . . , yN are the elements of the population.

Estimation of the mean (III)

I There are
(N

n

)
= N!

(N−n)!n! different samples.

I Of those,
(N−1

n−1

)
contain each of the values y1, y2, . . . , yN .

I Clearly,∑
(Y1 + Y2 + . . .+ Yn) =

(
N − 1
n − 1

)
(y1 + y2 + . . .+ yN)

where the sum in the left is taken over all
(N

n

)
different

samples. Dividing by
(N

n

)
finishes the proof.



Estimation of the mean (IV)

I Indeed,∑
(Y1 + Y2 + . . .+ Yn)(N

n

) =

(N−1
n−1

)
(y1 + y2 + . . .+ yN)(N

n

)
=

n
N

(y1 + y2 + . . .+ yN)

I Therefore,

E [Y ] =

∑
(Y1 + . . .+ Yn)/n(N

n

) =
(y1 + . . .+ yN)

N
= E [y ] = m

The indicator variable method

I We have

(Y1 + Y2 + . . .+ Yn) = (y1Z1 + y2Z2 + . . . yNZN)

where Zi is a binary variable which takes value 1 if yi
belongs to a given sample.

I The probability of that happening is n/N. Then,

E [(Y1 + Y2 + . . .+ Yn)] =
n
N

(y1 + y2 + . . . yN),

which again gives the previous result E [Y ] = y = m.

Population variance an quasi-variance

I They are defined as:

σ2 =

∑N
i=1(yi − y)2

N
σ̃2 =

∑N
i=1(yi − y)2

N − 1

I Similarly for sample analogues:

s2 =

∑n
i=1(Yi − Y )2

n
s̃2 =

∑n
i=1(Yi − Y )2

n − 1

I Turns out some formulae are simpler in terms of
quasi-variances.

Variance of Y (I)

I Theorem 2 In a finite population of size N, the estimator Y
of m =

∑N
i=1 yi/N based on a sample of size n < N

without replacement Y1, . . . ,Yn has variance:

Var[Y ] =
σ̃2

n

(
1− n

N

)
I Factor (

1− n
N

)
usually called “finite population correction factor” or
“correction factor”.



Variance of Y (II)

I Remarks:
I It is the same expression as in independent random

sampling with i) σ2 replaced by σ̃2, and ii) corrected with
the factor (1− n/N).

I If n = N, the variance Var(Y ) is 0 (why?).
I Formula covers middle ground between infinite populations

(n/N = 0) and census sampling (n/N = 1).

Variance of Y (III)

I Proof

Var(Y ) = Var
(

y1Zi + . . .+ yNZN

n

)

=
1
n2

 N∑
i=1

y2
i Var(Zi) +

N∑
i=1

∑
j 6=i

yiyjCov(Zi ,Zj)


I We only need expressions for Var(Zi) and Cov(Zi ,Zj).

Variance of Y (IV)

I Since Zi is binary with probability n/N,

Var(Zi) = (n/N)(1− n/N).

I But E[ZiZj ] = P(Zi = 1,Zj = 1) = n(n−1)
N(N−1) , so

Cov(Zi ,Zj) =
n(n − 1)

N(N − 1)
−
( n

N

)2
= −n(1− n/N)

N(N − 1)

I Replacing in expression for Var(Y ) will lead to result.

Variance of Y (V)

Var(Y ) =
1
n2


N∑

i=1

y2
i Var(Zi)︸ ︷︷ ︸

(n/N)(1−n/N)

+
N∑

i=1

∑
j 6=i

yiyj Cov(Zi ,Zj)︸ ︷︷ ︸
− n(1−n/N)

N(N−1)


=

1
n2

( n
N

)(
1− n

N

) N∑
i=1

y2
i −

1
N − 1

N∑
i=1

∑
j 6=i

yiyj


I Will rewrite expression in brackets.



Variance of Y (VI)

I Remark that,

N∑
i=1

(yi −m)2 =
N∑

i=1

y2
i −

(∑N
i=1 yi

)2

N

=
N − 1

N

 N∑
i=1

y2
i −

N∑
i=1

∑
j 6=i

yiyj

N − 1


I The expression in square brackets in th r.h.s is therefore

N
N−1

∑N
i=1(yi −m)2.

Variance of Y (VII)

I We are now done!

Var(Y ) =
1
n2

( n
N

)(
1− n

N

) N∑
i=1

y2
i −

1
N − 1

N∑
i=1

∑
j 6=i

yiyj


︸ ︷︷ ︸

N
N−1

∑N
i=1(yi−m)2

=
1
n

(
1− n

N

) ∑N
i=1(yi −m)2

N − 1

=
(

1− n
N

) σ̃2

n

Sample size for given precision (I)

I The (1− α) error is

δ = zα/2

√
σ̃2

n
(1− n/N)

I Solving for n we obtain

n =
Nz2

α/2σ̃
2

Nδ2 + σ̃2z2
α/2

I In terms of the variance, it can be written as:

n =
Nz2

α/2σ
2

(N − 1)δ2 + σ2z2
α/2

Sample size for given precision (II)

I σ̃2 or σ2 are required.
I We either replace an upper bound or conservative

estimation for σ2.
I Failing that, we estimate σ2 or σ̃2.
I Turns out s̃2 is an unbiased estimate for σ̃2 . . .

I . . .yet the difference between σ̃2 and σ2 or s̃2 and s2 is so
small in practice that they are used interchangeably.



Why strata?

I Sometimes we know something about the composition of
the population, knowledge that can be put to use.

I Example: We might know that males and females have
different spending in e.g. tobacco or cosmetics.

I To estimate average spending, it makes sense to sample
males and females, and combine the estimations.

I Sometimes, the target quantity might be similar, but the
variance quite different. Also makes sense to differentiate.

Example 1
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I Makes sense to estimate mean in each subpopulation

Definitions and notation

I We assume the population is divided in h strata. Total size
is N = N1 + N2 + . . .+ Nh.

I The i-th stratum has a mean mi = 1
Ni

∑Ni
j=1 yij and variance

σ2
i = 1

Ni

∑Ni
j=1(yij −mi)

2.
I Clearly,

m =
h∑

i=1

(
Ni

N

)
mi

σ2 =
h∑

i=1

Ni

N
σ2

i +
h∑

i=1

Ni

N
(mi −m)2

Estimation of the mean

I The estimator of the mean when sampling without
replacement the whole population has variance
σ̃2

n (1− n/N).
I Similarly, the estimation of the mean of each stratum has

variance σ2
i =

σ̃2
i

n (1− ni/Ni).
I The variance of the global mean reconstituted from the

estimated means of the strata is

σ2
∗ =

h∑
i=1

(
Ni

N

)2 σ̃2
i

ni
(1− ni/Ni)



Does the estimation of m improve?

I Yes. If we sample each stratum in proportion to its size
(i.e., ni/Ni = n/N for all i), then:

σ̃2

n
(1− n/N)− σ2

∗ =(
1− n

N

) h∑
i=1

(
Ni

N

)[
Ni − 1
N − 1

− Ni

N

]
σ̃2

i
ni

+

(
1− n

N

) 1
n

h∑
i=1

Ni

N − 1
(mi −m)2

I Marked Improvement when the mi ’s very different.

Optimal allocation (I)

I It makes little sense to spend sampling effort for
homogeneous strata.

I After all, if a stratum is perfectly homogeneous, looking at
a single observation is enough.

I Let wi = Ni/N. If we can spend C, we should minimize

F =
h∑

i=1

w2
i
σ̃2

i
ni

+ λ

(
h∑

i=1

cini − C

)
I First term, variance neglecting finite population correction.
I Second term, restriction on total sampling cost, assuming

ci cost per unit sampled in stratum i .

Optimal allocation (II)

I Taking derivatives w.r.t. ni (i = 1, . . . ,h) and equating to
zero, we obtain

∂F
∂ni

=
w2

i σ̃
2
i

−n2
i

+ λci = 0

I From that expression we get,

ni ∝
Ni σ̃i

N
√

ci

I Therefore enough to allocate ni proportional to right hand
side..

I Intuition: sample more big strata and disperse strata;
sample less strata where sampling is relatively more
costly.

Optimal allocation (III)

I But, how to determine ni?
I We know

ni = k
Ni σ̃i

N
√

ci

I Further,

C =
h∑

i=1

cini = k
h∑

i=1

Ni σ̃i
√

ci

N

I Therefore,

ni =
NC∑h

i=1 Ni σ̃i
√

ci︸ ︷︷ ︸
k

× Ni σ̃i

N
√

ci



Abraham Wald on sample selection

Abraham Wald (1902-1950)

I Hungarian-born. Graduated
(Ph.D. Mathematics) from
University of Vienna, 1931.

I Fled to the USA in 1938, as Nazi
persecution intensified in Austria.

I Important contributions to the war
effort as statistician (notably
sequential analysis)

I Was consulted about aircraft
armoring.

What Wald saw that the others did not

I Mark hits in B-29 bombers as they come back.

I Pretty obvious! Will armor the most beaten areas.
I I didn’t tell you to do that!
I Do you want us to protect the areas with no hits?
I That’s exactly what I suggest!

Sample selection is ubiquitous!

I If you ask for volunteers in a field study, no chance you will
get a truly random sample.

I Never do!
I Do not let the survey taker choose the units.
I A random sample is not a “grab set”.
I Build a census, randomize properly, address the chosen

units and no others.

Methods of sampling that you should be aware of

I Multi-step sampling and conglomerate sampling
I Systematic sampling
I If you use systematic sampling (every n-th unit with

random start), make sure no periodicities exist that will
destroy randomness.



Convergence in distribution Xn
d→ X

I Means that the distribution of Xn approaches that of X .
I Does not imply in any way that Xn approaches X .
I Central limit theorem (CLT) establishes convergence in

distribution to a normal in many circumstances.
I If

ϕXn (u) −→ ϕX (u)

and ϕX (u) is continuous at u = 0, then Xn
d→ X (or,

equivalently, FXn (x) −→ FX (x) in all continuity points of
FX (x)).

Converge in probability Xn
p→ X (I)

I This is a different beast
I It does imply that Xn approaches X
I . . .but not in the usual “mathematics” sense.
I When we say that e.g. an = 1/n converges to 0 we mean

that for large enough n, an ≈ 0.
I No matter how small ε, n can always be found such that
|an − 0| < ε.

Converge in probability Xn
p→ X (II)

I When we say that Xn
p→ X we mean that with arbitrarily

large probability (but not certainty!) Xn ≈ X .
I Formally: when for all ε > 0, η > 0 there is N such that

when n > N we have:

P(|Xn − X | < ε) ≥ 1− η

I This does not guarantee that |Xn − X | < ε for any n, but it
makes it highly probable.

I Tchebycheff’s inequality is a simple way to show
convergence in probability in many cases.

Convergence in probability via Tchebychev inequality
(I)

I Consider the simple case where Zn ∼ (m, σ2/n). This
happens for instance with the binomial frequency
(X1 + . . .+ Xn)/n with m = p and σ2 = pq.

I Then (Tchebycheff),

P(|Zn − p| < k
√

pq/n︸ ︷︷ ︸
ε

) ≥ 1− 1/k2︸ ︷︷ ︸
1−η

I Make your pick of 1− η as close to 1 as desired; whatever
the implied k , we only have to choose n large enough to
make ε as small as we wish.



Convergence in probability via Tchebychev inequality
(II)

I Clearly, nothing special about the binomial.
I Same thing will happen with any Zn ∼ (m, σ2

n) such that
σ2

n → 0.
I Then,

P(|Zn −m| < kσn︸︷︷︸
ε

) ≥ 1− 1/k2︸ ︷︷ ︸
1−η

ensures Zn
p→ m.

I Common mean and variance going to zero is a sufficient
condition for convergence in probability (to the common
mean) of a random sequence.

Convergence in mean square and almost surely

I We will hardly use them. Called “strong convergences”
(convergence in probability is called “weak convergence”).

I Convergence in mean square: Xn
m.s.→ X if

lim
n→∞

E |Xn − X |2 = 0.

I Easy to see this implies converge in probability.
I Convergence almost surely: Xn

a.s.→ X if

P(ω : lim
n→∞

Xn(ω) = X ) = 1.

I It also implies weak convergence.
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