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Relative efficiency

We have seen so far that unbiasedness is a desirable property, in principle;
it can be thought of as the absence of systematic deviation of our estimator θ̂
from the target θ. The formal condition is E[θ̂] = θ.

We have seen further that consistency, requiring θ̂ p→θ is really the mini-
mum we are willing to settle for.

The questions arises now that there are many estimators. We might be
tempted to search for “the best”, but this is futile (slide Efficiency (I)):
there is no such thing as an estimator which is always better than any other.

This leads us to ask a less ambitious question: among a restricted class
of estimators, such as the class of unbiased estimators, is there one which
according to the criterion of MSE (minimum square error) is best? Remember
that MSE = σ2 + (bias)2, so comparing MSE among unbiased estimators
amounts to the comparison of variances (for the bias is zero). Comparison
among unbiased estimators using a MSE criterion boils down to comparison
of variances, and the ratio of variances of any two estimators is called their
relative efficiency (slide Efficiency (II); the next two slides supply examples
on how to compute it).

Efficiency

Relative efficiency is a useful concept to compare a pair of unbiased
estimators but we are out in search of “the best” among unbiased estimators.
It makes sense then to ask ourselves what is the minimum variance that
we can achieve (for a given sample size) with an unbiased estimator. Any
estimator which reaches that minimum variance would qualify as “best” or
“as good as the best” in the class of unbiased: we will say the it is efficient.

But what is that minimum variance? There is a remarkable result, almost
simultaneously discovered in the last years of World War II (and published
shortly after) by the Swedish actuary Harald Cramér and Indian statistician
C.R. Rao (slide The Cramér-Rao lower bound). In rather general condi-
tions (so called regularity conditions), the minimum variance of an unbiased
estimator can be computed rather easily. The proof of the CR lower bound is
not difficult: you can find it in a number of books, including Garthwaite et al.
(1995), Cramér (1960) and a number of others (but we shall not present it
nor require it in an exam).
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The importance of this is quite clear: we can compute the least possible
variance of an unbiased estimator without knowing such estimator. Once we
find one that attains the CR lower bound, there is no point in searching more:
nothing better exists. Knowing before we start what is the best we can attain,
we know when we can stop searching.

An unbiased estimator that reaches the minimum attainable variance
prescribed by the CR lower bound is called efficient.

Regularity conditions and computation of the CR bound

Slide What are those regularity conditions? gives a simplified view
of the requirements for the CR result to hold. Basically, the density has to be
smooth and “differentiable enough” with respect to the parameter; and, most
important (as it is often the condition that fails), the range of the distribution
must not depend on the parameter.

For instance, in a Poisson distribution the variable can take
values 0, 1, 2, 3, . . ., whichever the value of λ. Compare with the
(non-regular case) of a U(0, θ) where the values X can take change
with the value of θ.

Slide A trick to compute the Cramér-Rao bound shows a useful
relationship. Sometimes the expectation of the squared first derivative of
the log likelihood is difficult to compute and the expectation of the second
derivative is easy. The relationship among both enables us to compute
whichever is simpler.

Finally, you have some examples of computation of the CR in common
situations.
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