
Comments on hypothesis testing (6 April 2020)

“Hard” logic

Slides Logically equivalent statements (I)-(II) introduce one simple
fact: p⇒ q (read “p implies q”, where p and q are any two clauses) is logically
equivalent to ¬q ⇒ ¬q (read “not q implies not p”).

The second statement is called the contra-positive of the first, so what we
are saying is that any statement and its contra-positive are both true or both
false. You have examples in the first slide.

To show the truth of an statement, no amount of concordant evidence
will do. In other words, if we want to show that whales live in the water,
no number of whales that we actually see living in the water will suffice to
establish the statement conclusively as true: it could always be the case that
some whale, unseen to us, lives in the woods.

However, if we find a single whale not living in the water, then we can
claim the statement “whales live in the water” to be false. This whale not
living in the water is what we call a counterexample to the statement “All
whales live in the water.”

“Soft” logic

We are concerned with random phenomena, in which the relationship
between things we observe is not fully reproducible. (Remember that lecture,
some weeks ago, when we dealt with this at length?)

In the realm of random phenomena things are not so clear-cut as in what
we have called “hard logic”. That a coin is regular does not imply that in any
series of throws it gives about 50% of “heads”. We may find (quite rarely)
a series of throws where “heads” occur much more frequently than 50% (or
much less frequently). But we can say (slides Statements probabilistically
related (I)-(II)) that most of the time the relative frequency of “heads”
is close to 50%.

The “contra-positive” of this mild statement is that when the percentage
of “heads” is far from 50%, it is unlikely that the coin is regular: it does not
preclude that the coin be regular, but makes us doubt it.

A percentage of “heads” far from 50% would be seen as a “soft counterex-
ample” to the regularity of the coin.
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Hypothesis testing: generalities

This is the kind reasoning we apply when testing hypothesis:

1. We work out what should be the expected result of an experiment, if the
hypothesis under test were true (for instance, we would expect about
50% of “heads” if the coin is regular).

2. We perform the experiment (throw the coin many times and compute
the percentage of “heads”).

3. If what we obtain departs substantially from what we would expect to
find most of the time (as would be the case if the percentage of “heads”
were quite different from 50%), we claim that our hypothesis is false.

This is further elaborated in slides Hypothesis testing (I)-(III).
Notice that we are bound to make mistakes; for, even if our hypothesis is

true, every once in a while we will find an abnormal result in our experiment
which will make us think that it is not. We call this “type I error” (rejection
of a hypothesis which is true), and its probability is α, the significance level.

This is not the only mistake we can make; sometimes, our hypothesis will
be false, and yet the experiment designed will fail to show a result abnormal
enough to make us reject the hypothesis. Then we will incur in a “type II
error” (failure to reject a hypothesis which should be rejected), the probability
of which we call β.

Hypothesis testing concepts and notation

Slides The anatomy of a hypothesis test (I)-(V) introduce some
notation and additional concepts. One of them is critical region: the set of
values of the test statistic which we consider “rare” and therefore lead to the
rejection on the hypothesis under test.

Two comments are worth making here: if we perform our hypothesis test
looking at the value of a test statistic, we better do it in such a way that we
do not loose information: almost invariably we will want the test statistic to
be a sufficient statistic (cf. previous slides on sufficiency).

Another comment is that we can always have the type I probability error
α equal to zero. If we decide never to reject the hypothesis under test, we
will never incur the error of rejecting it incorrectly! But of course this is not
satisfactory, what we want is no incorrect rejections, but with the possibility
of rejection when it is adequate.
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Hypothesis testing design trade-offs

This leads us to the last two slides for the present lecture: slides The
trade-off between Type I and Type II errors and Trade-off between
Type I and II errors - Illustration. We have to possible extreme decisions:

1. Set an empty critical region, i.e. our test statistic will never be there
and we will never reject the hypothesis under test. Then α = 0 (there
is zero probability of incorrect rejection, for we do not reject at all!)
but β may be very large.

2. Set a critical region which includes all possible values of the test statistic.
Then, the test statistic will always be in the critical region, we will
always reject and therefore never fail to reject the hypothesis under test.
Then β will be zero (we cannot fail to reject an incorrect hypothesis,
because we always reject, whether appropriate or not!); but α may be
very large.

Between these two extremes, we have all intermediate choices. As we
enlarge the critical region, α will grow and β will decrease. Ideally, we would
choose among the feasible values of α and β the pair which minimizes the total
cost of error –whether type I or type II error. This may be very complex, so
a simpler approach is used: set α to some value which seems acceptable, then
for said α minimize β (or equivalently maximize the power 1− β). This leads
to most powerful tests and the recipe to construct them, the Neyman-Pearson
theorem, which is the topic we will address in the next lecture.

3


