
Comments on normal theory tests (27 April 2020)

We have seen in the last days a number of tests, all assuming a normal
distribution of the population sampled. Sometimes this may be an unwar-
ranted assumption, and we have seen that a permutation test can help when
testing difference of means. Al alternative is to use Tchebiychev’s inequality,
which only requires the existence of the first two moments of the distribution
sampled.

Thebychev’s inequality: when everything else fails

Slides Testing H0 : m = m0 with no normality (I)-(II) show the
use of Thebychev’s inequality. If in the presence of normality we know that
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where zα/2 is the quantile leaving probability α/2 to its right in the N(0, 1)
distribution. If σ is not known, we have a similar expression with the quantile
taken from the Student’s t distribution.

If normality cannot be assumed, we have from Tchebichev’s inequality:
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If we want the right hand side to have probability at least 1− α, it suffices to
replace k by 1/

√
alpha throughout:
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This is similar to (??) and enables us to either test hypothesis or construct
confidence intervals for m. These intervals will be wider than those based on
normal theory: when α = 0.05 for instance, zα/2 = 1.96 while 1/

√
α = 4.4721,

over twice as large.

Using normal tests as an approximation: proportions

It is still the case that even for distributions that are far from the normal,
the tests studied are quite good approximations. One important case is the
estimation of a proportion (slides The case of a proportion (I)-(III). Here
the mean Xn = (X1 + . . . + Xn)/n is the binomial frequency and although
the individual Xi are binary we know that for large enough n (which in this
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context is np > 18), Xn is close to normal and we can expect the normal
theory approximation to work quite well. This is indeed the case and

Xn − p
σ/
√
n
≈ N(0, 1) (4)

We can replace s by the upper bound 0.25 (
√
p(1− p) in the most unfavourable

event, when p = 1− p = 0.5). Slides The case of a proportion (II)-(III)
show a worked example in which we have estimated s, as the bound would be
too conservative.

Using normal tests as an approximation: other cases

Slides Testing differences of means and Testing differences of pro-
portions both show uses of the normal theory as an approximation. Notice
that we use the N(0, 1) for the distribution of the test statistic, whether or
not the variance is known or estimated. For the sample sizes needed for these
approximations to work out, we assume that our estimations of the variances
are quite close to the true variances.

In the case of the difference of two means, for small samples we required
equal variances. If the sample is large enough the the estimated variances
can be taken as the true variances, we still use the normal approximation,
whether or not variances are equal.

Paired comparisons

One of the most common misuses of the two-sample t test is the situation
where there seems to be two populations, but in fact what we have is single
population with a bi-variate response. In this last case, the two-sample t test
is usually quite powerless, and will fail to reject the null hypothesis when in
fact would be indicated.

The example presented in slides Paired comparisons (I)-(III) should
make the matter clear. We are comparing weights of the first and second
children of a sample of mothers. We must resist the temptation of considering
two independent samples (first born and second born children), for the weights
cannot be assumed independent: each pair of brothers come from the same
mother and for this fact their weights at birth should be regarded as related.

The simple idea that the paired comparisons method exploits is: if weights
of first and second babies have equal mean, their differences should have mean
zero. We can thus test this later hypothesis.

Slides Paired comparisons (IV)-(V) illustrate the computations (and
different conclusions) using the two methods: only the paired comparisons
method would be correct in this setting.
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We have checked already the computations made by the function t.test

in the standard two sample test. In the case at hand, taking the differences
of weights for brothers, we would have:

> First <- c(3.80, 2.40, 2.750, 1.800)

> Second <- c(4.150, 2.755, 2.900, 1.990)

> Dif <- First - Second

> n <- length(Dif)

> Xb <- mean(Dif)

> s2 <- sum( (Dif - Xb)^2 ) / n

> t <- (Xb - 0) / ( sqrt(s2/(n-1)) )

> t

[1] -4.899484

> Xb

[1] -0.26125

This checks out all right with the results in the slide Paired comparisons
(V) which we reproduce here:

> t.test(x=First, y=Second, paired=TRUE)

Paired t-test

data: First and Second

t = -4.8995, df = 3, p-value = 0.01627

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.43094421 -0.09155579

sample estimates:

mean of the differences

-0.26125

All we have to do to switch from an ordinary to a paired t-test is to add
the argument paired=TRUE.

Notice that this rejects at the α = 0.05 level the null hypothesis, which
the ordinary (an here incorrect) two sample t-test did not. The reason is
clear: we have a difference in the means of −0.26125 Kg., the second babies
being heavier. This was not significant in the two sample t-test, for there was
wide variation on children weight from mother to mother. When we take the
differences, the “mother effect” disappears and −0.26125 is compared to a
much smaller variance and becomes significant.
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