
Comments on hypothesis testing (13 April 2020)

Last week we introduced some concepts on hypothesis testing. Before we
tackle some problems, we need to introduce some new concepts and ideas.
We have so far described the problem of hypothesis testing as dealing with
the choice between two competing hypothesis, conventionally called H0 (the
“null” or statu quo hypothesis: what we are willing to accept if there is no
evidence to the contrary) and Ha (the “alternative” or competing hypothesis:
what we would be prepared to entertain if H0 seems to be at variance with
the evidence).

Pure significance tests

Some times (see slide Pure significance tests) we only have a null
hypothesis H0: we want to test whether the evidence is compatible with a
certain H0 with no clear idea of alternatives.

For instance, we would like to test that measurements of an instrument
have zero bias (=measurement errors have mean zero). If this is not true,
it could be that the instrument underestimates the true values or else that
it overestimates; and we have no reason to believe that the failure of the
instruments should be in any specific direction.

When this is the case, we compute the likely region for the test statistic
and anything outside is made the critical region. Assume for the time being
that we know that measurements are normally distributed with variance
1. With a sample size of only one observation (n = 1) we would reason as
follows: “If indeed X ∼ N(0, σ2 = 1), 95% of the time we should obtain an
observation between −1.96 and 1.96. An observation outside that interval is
“rare” (happens only 5% of the time), hence evidence against H0.”

The critical region is shown in lavender in Figure 1. Not having any
preconceived ideas about the way our instrument could fail to be exact, we
consider errors of measurement too large, whether positive or negative, as
evidence against H0. The critical region CR is made of the two tails and α is
the surface in blueish, lavender color.
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Figure 1: Pure significance test of H0 : X ∼ N(0, 1) with no specified
alternative, sample size n = 1 and α = 0.05
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Testing against a pre-defined alternative

Sometimes we know that if H0 fails to be true, it must be because another
Ha is true. For instance, installing a certain type of insulation in the walls
of a house may or may not lead to a reduction in energy consumption, but
certainly will not produce an increase: however effective, the additional layer
of insulation can only reduce the loss of heat, never increase it.

Suppose we measure energy consumption in two neighbouring houses, the
first with insulation, the second without, but otherwise identical. Assume that
in the former energy consumption is distributed as N(m1, σ

2 = 1/2) and in the
second as N(m2, σ

2 = 1/2). (We are making unwarranted assumptions here,
like normality and σ2 = 1/2; we shall have occasion to lift such assumptions
later.)

The hypothesis the there is no improvement in energy consumption can be
stated as H0 : m2 = m1 or equivalently H0 : m2−m1 = 0. Since we know that
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the added layer of insulation cannot possible increase energy consumption, if
H0 fails it must be because Ha : m2 −m1 > 0 is true.

If we take one observation from each of the houses and compute Z =
X2 −X1, then Z ∼ N(0, 1) under H0 (you now see why we took σ2 = 1/2
above; so that Z will have variance 1).

Hence, one might be tempted to revert to the situation illustrated by
Figure 1 and reject H0 if Z is in either tail. This would be wrong; for
Z < −1.96 would be a rare observation under H0, but even rarer if Ha :
m2 − m1 > 0 is true. It is only Z large and positive that we can take as
evidence against H0 and in favor of Ha, the only alternative we are prepared
to entertain.

Otherwise said, we will not consider a two-sided critical region as in
Figure 1, but rather a one sided critical region made of the right-hand tail of
size α = 0.05 (refer to slide Testing against an alternative Ha).

You can easily modify the reasoning to cover a case in which only negative
values of Z would be taken as evidence against the null and the critical region
would be the left-hand tail.

Most powerful tests

Taking the critical region on one side or the other, as required in each
case, makes a lot of sense and is intuitively easy to grasp. The question we
have to ask ourselves is: “In what direction should the test statistic deviate
when the null is not true?”. If the answer is “To the right”, we will place
there the critical region, and likewise if the answer is “To the left”.

Now two things should be clear. First, that acting in the way described
we are maximizing the power, for we are maximizing the probability the the
test statistic falls in the critical region. Second, that his “common-sense”
approach to the placement of the critical region may not be enough in complex
situations in which the way to proceed may not be obvious. We will introduce
for such situations a principled approach, the Neyman-Pearson theorem,
which will guide us in the construction of the more powerful test against a
given alternative.

The Neyman-Pearson theorem. Motivation

In keeping with our usual method, we will try first to motivate the theorem
and provide the intuition behind it, then present the theorem more formally.
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Table 1: Distribution of X under two possible hypothesis

x 0 1 2 3 4 5
P (x; θ0) 0.60 0.26 0.05 0.04 0.04 0.01
P (x; θa) 0.10 0.15 0.10 0.25 0.30 0.10

Let’s consider a situation as depicted in slide The Neyman-Pearson
theorem (I); we reproduce the small table giving the probabilities of X
under two possible hypothesis:

Consider the simple case in which we are required to decide between
H0 : θ = θ0 versus Ha : θ = θa. We can take a single observation X and are
required to choose between H0 and Ha. This amounts to choosing a critical
region, CR, so that when X ∈ CR we will reject H0 and decide for Ha.

We choose first α = 0.05; remember that H0 is always the “default” or
statu quo hypothesis: what we believe unless given evidence to the contrary.
Typically, rejection of H0 is costly, so we set α, the probability of incorrect
rejection (or type I error), small.

If we set CR = {4, 5}, then α = 0.05 as required, for that is the probability
of obtainingX ∈ CR under H0. But there are other possibilities: CR = {3, 5}
or CR = {2}.

Now, with all these CR’s having the same α = 0.05, we would prefer the
one with smallest β ( = type II probability error) or, equivalently, largest
1− β ( = power).

Notice that we want to include in the critical region points which have
large probability under Ha. If we include, for instance, 2, the probability
of the CR when Ha is true ( = power) increases by 0.10. If we consider
CR = {3, 5}, the power will be 0.25 + 0.10 = 0.35. It is still better if we take
the CR = {4, 5}, for in that case the power is 0.30 + 0.10 = 0.40.

In this toy problem we have been able to look at all possible critical regions
of size1 α = 0.05 and pick the one with the largest power. Clearly, in a real
problem (specially with continuous random variables) this is not a feasible
way to proceed.

1“Size” is the significance level or α.
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Table 2: Quantities of potatoes available from suppliers A to F and their
prices

Supplier A B C D E F
Asking price e per Kg. 0.10 0.15 0.10 0.25 0.30 0.12
Kgs. per euro 10 6.66 10 4 3.33 8.33
Kgs. available 3000 2000 1500 1500 1000 1000
Total value 300 300 150 375 300 120

The Neyman-Pearson theorem is about buying potatoes

Suppose you are charged with the duty of buying a large quantity of
potatoes for an institution, as much as you can with the available budget of
1000e. Suppose, for the sake of simplicity, that all potatoes are completely
homogeneous. When you go to the market, you find suppliers ready to supply
small quantities, so you have to buy from several of them to complete your
task. Suppose further that the available quantities from each supplier and
the asked prices are as in the Table 2 (where some information is redundant).

One possible way of spending your money would be to compute all possible
ways to spend 1000e picking at most “Total value” from each supplier, and
then see which of these combinations whose total cost is 1000e yields you
more potatoes.

Of course in real life you would never do that! Rather you would go to
the suppliers with the lowest price (A and C) and purchase as much potatoes
they can offer: this is 4500 Kgs. worth 450e. With your remaining money,
you would go to F and spend 120e to get you a further 1000 Kg. of potatoes.
At his point you would still have 430e in cash. Your next visit would be B,
where you would spend 300e to get a further 2000 Kgs. and your final 130e
would be spent with D, buying 130/0.25 = 520 Kgs. at the much heftier price
of 0.25e.

In all, you would end up with 4500 + 1000 + 2000 + 520 = 8020 Kg. of
potatoes and zero cash.

It is quite obvious that you have made the best possible use of your money,
as you have never bought from a supplier until cheaper sources were exhausted.
All you had to do is to visit first suppliers offering lower prices —which is the
same as saying that they give more Kgs. per unit of money.

With this in mind, let us revisit Table 1 which we will complete now
with an additional line giving the ratio of the second row to the first (see
Table 3). Remember that when we include one point in the critical region,
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Table 3: Distribution of X under two possible hypothesis

x 0 1 2 3 4 5
P (x; θ0) 0.60 0.26 0.05 0.04 0.04 0.01
P (x; θa) 0.10 0.15 0.10 0.25 0.30 0.10

(Row 2):(Row 1) 0.166 0.577 2.00 6.25 7.5 10

the probabilities in the second row are the increase in power while those in
the first row give the increase in α. The third line can then be interpreted as
“the amount of power we get per unit of α ’spent’ when we include one point
in the critical region.”

If we want a critical region of size α = 0.05, the metaphor of the potatoes
tells us what to do: keep adding points to the critical region until we “spend”
our 0.05 units of α; and do so in order, starting by the points that give us
more power per unit of α (already visible in the third row).

We would go on to “buy” power including first point 5 (for an expenditure
of 0.01 units of α). With the remaining 0.04 units of α we could “buy” for
our critical region the power offered by point 4 or point 3; clearly 4 offers a
better deal, with 7.5 units of power per unit of α spent. When we “buy” that
power, we would have our 0.05 of α spent, and our critical region would be
{4, 5} with a total power of 0.40; and that’s it.

If you pause now for a moment to think you will realize that what you
have done is to select for your critical region points verifying:

P (x; θa)
P (x; θ0)

≥ 7.5 (1)

i.e. giving at least 7.5 units of power per unit of α “spent”. It should be
obvious that you can get higher power only by “spending” more α. This
nicely illustrate the compromise the statistician has to face when designing a
hypothesis test: he has to trade α for β.

If you now go to slide The Neyman-Pearson theorem (II) you will
realize that it merely states the same than equation (1). The next two slides,
The Neyman-Pearson theorem - Proof (I)-(II) offer a semi-formal proof
which will convince you, if need be, that the rule given by equation (1) is
completely general.

Next come three slides with examples, Neyman-Pearson example (I)-
(III). Notice that in all cases the Neyman-Pearson theorem gives the shape
of the critical region, but no indication about the value of kα: this we have
to determine ourselves, and depends on the α we want.
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The final three slides in this block, Neyman-Pearson and sufficiency
(I)-(III) point to a connection to sufficiency. We found that there are in some
cases statistics which squeeze all available information from a sample, so we
should pick our estimators and test statistics as functions of these sufficient
statistics. We saw that the MLE (maximum likelihood estimator) had in
some sense “built in” sufficiency. The same happens with the likelihood ratio
used in the Neyman-Pearson method of finding most powerful tests: this
should be reassuring.
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